PUBLIC HEALTH REPORTS

RATES OF PHYSICAL IMPAIRMENTS IN 28 OCCUPATIONS, BASED ON 17,294 MEDICAL EXAMINATIONS ${ }^{1}$

By Rollo H. Britten, Senior Statistician, and Jennie C. Goddard, Junior Statistician, Office of Industrial Hygiene and Sanitation, United States Public Health Service

In a recent paper analyzing certain phases of a tabulation of health examinations, ${ }^{2}$ it was brought out that broad occupational groups of white, native-born, male life insurance policyholders showed marked differences in the rates of physical impairments. Of all the groups (agricultural, business, professional, and skilled trade), the one which, in general, presented the highest rates was "skilled trade." Such a finding made it desirable to study the rate of impairment in the specific occupations making up this group, and that is the purpose of the investigation reported in this paper. In order to make the comparisons as comprehensive in application as possible, there have been included a number of specific occupations which would not strictly fall within the definition of "skilled trade." Thus the study is based upon 28 occupations (with a total of 17,294 persons), instead of the 19 occupations used in the previous analysis.

In view of the fact that the general conditions of the investigation and the possible factors of selection involved were described in detail in the first paper in this series, ${ }^{3}$ it is necessary at this point only to say that the data were taken from records of examinations which had been given to policyholders as a part of the welfare service of certain life-insurance companies, and were made by physicians cooperating with the Life Extension Institute. Such examinations are not to be confused with those made of applicants for insurance. All the persons included in the study had previously taken out life insurance. This is a factor of importance in considering the representativeness of the

[^0]individuals included in the various occupations, because it is quite apparent that individuals who have purchased life insurance and have also taken the trouble to obtain a health examination are not typical of the general industrial worker. This fact is especially true of certain of the occupations which are made up largely of persons on the lower economic planes.

Women, foreign-born, and colored persons have been excluded from the study. The number of women in specific occupations was not sufficiently large to permit a determination of rates of physical impairment. It is not probable that the foreign-born or colored individuals who would be included in records of examinations of this character would be sufficiently representative to be used.

The examinations are of the periodic type, but for this analysis first examinations only have been considered.

In the paper dealing with broad occupational classes, it was found that the "skilled trade" group showed unusually high impairment rates for the following conditions: Defective vision, uncorrected; defective hearing; carious teeth; slightly infected gums; pyorrhea, definite; insufficient dentistry; frequent colds; bronchitis; organic valvular lesions of the heart; enlarged heart; arterial thickening; constipation; backache; insomnia; use of patent medicines; habitual use of laxatives; varicose veins; albumin in urine; and a tendency to rank high for a number of other conditions, such as sugar, pus, blood, and casts in the urine. The only condition in the "skilled trade" group showing a rate greatly below that of the other groups was defective vision, corrected, and this low rate means merely that a larger proportion of persons in the "skilled trade" group lets defects of vision go uncorrected.

The purpose of the present paper will be to determine in so far as possible whether specific occupational factors account for these higher rates.

The questions answered by the policyholder in his personal history were-"Occupation;": :"Particular kind of work;" "Previous occupation." The physicians who were making the examinations were not concerned with the matter of occupation or the making of records for purely statistical purposes. It is impracticable, therefore, to make a rigorous classification according to industry and occupation, and each of the groups used must be regarded as more or less indefinite in nature. At the same time reference to the 28 occupations for which there were sufficient numbers to permit analysis will show that a fairly specific classification has been possible.

As was stated in previous papers, for the purposes of this series of studies the examinations have been divided into two groups, namely, those made in the "head" offices of the Institute (principally in New York, but later also in Chicago and Boston), and those made in
the "field" (all other localities in the United States and some in Canada). Considerable difference in the rates for the same impairment has been revealed by comparing the results in these two groups, but for the purposes of the present study it has generally been advisable to consider only the "field" examinations, because of the small numbers in the other group.

Very little information is available as to the inherent differences in individuals following specific occupations. One fundamental factor, however, lies in the age distribution of persons in this study. Table 1 presents the average age of persons in each occupation in the "field" and "head" offices, as well as the number of persons examined.

Table 1.-Average age and number of workers in each occupation ${ }^{1}$

Occupation	Average age in years		Number of persons	
	In field	At head office	In field	At head office
Total	37.8	37.1	17, 294	3,293
Blacksmiths	43.6	45.8	172	17
Domestic help.	42.2	38.8	188	48
Carpenters.-	41.8	42.3	1,673	153 44
Bricklayers.	40.7 39.5	38.6 40.7	${ }_{6} 23$	147
Firemen (stationary)	39.4	40.5	617	70
Tailors...-...........	39.3	39.4	1,053	486
Waiters and hotel servants	39.1	36.6	282	112
Butchers----....	38.8	38.5	564	132
Firemen, police.	38.7	38.6	440	117
Barbers	38.7	38.8 37	721	95 40
Metal workers.	38.6 38.6	38.4 38.0	347 332	42
Foundry workers	38.6		173	5
Street-railway employees.	38.5	35.9	287	20
Woodworkers....-.-....	38.4	37.8	396	42
Plumbers, pipe and steam fitters.	38.0	33.8	829	148
	37.2		288	3
Shoo-factory operatives.	37.1	36.2	${ }_{977}$	62
Printers---1--.-.-.-.-	36.9 36.7	36.3 37.7	9207	232 24
Textile mill operators.--	36.4	36.6	3,070	265
Telephone and telegraph operators	36.4	34.9	410	42
Factory workers (unclassified, light)	36.1	35.2	611	104
Garment operatives....-	35.2	35.3	268	240
Chaufieurs...........	35.1	32.9	595	232
Cutters (cloth)	34.8 34.2		327 1,014	174 199
Electricians...-	34.2	32.8	1,014	199

120 to 59 years of age.
It will be noted that, in general, the average age does not differ widely, being from about 39 to 37 years for half of the occupations. However, a few groups show more marked differences. For instance, the average age of blacksmiths in the "field" data is 44 years and the average age of electricians 34 years. The effect which these distinctions in age have upon the impairment rates will be considered in the course of the paper.

It is difficult to interpret the differences in impairment rates for the various occupations, because the number of persons in each occupa-
tion varies greatly, ranging from 3,070 to 172 in the "field" data. It was also found that the rates of specified impairments varied widely in the different occupations, from about 40 per cent to about 1 per cent. Accordingly, a criterion was required in order to eliminate rates where the chance fluctuation was too great. To do this it was necessary to have an objective, arbitrary limit, independent of the opinion as to whether the rate in question was relatively high or low in comparison with other rates for the same impairment. Such a criterion could not be based entirely on the number of persons in the occupation, since even the occupations with relatively few could be used for the very common impairments; nor on number of cases of a particular condition, since the smaller the rate the fewer the cases required to establish significance. By reference to the actual probabilities involved, the following method was developed: If the number of individuals in a given occupation was too small to yield, at the median rate for all occupational groups, $50 \sqrt{p q}$ cases, that occupation was omitted for that particular impairment. ${ }^{4}$

Although some of the individuals classed in the various occupations are more than 60 years of age, it was felt that a more precise indication of the rate of impairment among persons actually employed in industrial work would be obtained by limiting the study to individuals between 20 and 60 years of age, and this has been done throughout the discussion.

The basic data on which the analysis rests are given in Table 2. The data are limited to the "field." In the appendix will be found tables showing the number of cases for both "head" and "field."

[^1]Table 2.-Impairment rates by cause in each specific occupation, after application of criterion

Table 2.-Impairment rates by cause in each specific occupation, after application of criterion-Continued

	∞	－ 0 － ผค่ ∞	$\underset{\sim}{\infty}$	 	$\stackrel{\rightharpoonup}{0}$
∞ のNN一 $\omega^{\circ} 0^{\circ}$ no ${ }^{\circ}$	O		$\begin{aligned} & \text { mo } \\ & \text { niod } \end{aligned}$	๓のNみーNNHmOm im 	$\stackrel{\oplus}{\stackrel{\circ}{-}}$
	$\begin{aligned} & \infty \\ & \text { ヘi} \\ & \hline \end{aligned}$	$\begin{aligned} & -\infty \infty \infty \\ & \text { مicio } \end{aligned}$	io	 	$\stackrel{0}{0}$
	$\underset{\infty}{\sim}$	$\begin{aligned} & \infty \infty \infty \infty \\ & \text { sicios } \\ & \hline \end{aligned}$	NN		$\begin{aligned} & \infty \\ & \stackrel{1}{2} \end{aligned}$
	$\underset{\infty}{\infty}$	－ザ 0 が ヘึinio	$\begin{aligned} & \infty \infty \\ & \text {-ios } \end{aligned}$	$\infty \infty$ が 	$\overrightarrow{\mathrm{i}}$
ががか 	$\stackrel{\star}{0}$		NO	サNザ 	$\overrightarrow{0}$
！o	$\stackrel{\infty}{\infty}$	$\infty \times$ ๙ิ่ง			$\stackrel{N}{\text { ¢ }}$
	$\underset{\infty}{\mathbf{N}}$	$\begin{aligned} & \text { HNN } \\ & \text { ぶ心O } \end{aligned}$	$i \infty$		$\stackrel{\rightharpoonup}{\mathbf{a}}$
Noーの一 	$\stackrel{\mathbf{N}}{\mathbf{N}}$	0 ハーロ Do 0	$\infty \infty$ ヘウ่	 	$\underset{\rightrightarrows}{\rightrightarrows}$
OMの	※	がかO ベறఱpo	がゃ゙	サO 000 ONmNのNme 	$\stackrel{\infty}{\infty}$
	$\underset{\infty}{\infty}$		10	ONNONHOONHW ！ 	∞
0∞ ONo － $\boldsymbol{\infty}$	$\underset{\infty}{\infty}$	やかへ。 तio쿠	$\begin{aligned} & \infty \infty \\ & \text { ri+i } \end{aligned}$	 	∞
－レッロールト $0^{\circ} 0^{\circ} 0^{\circ}$	0	NOMO ఱivio	No ๗ึ	Nーn $\infty \omega^{\circ}$ nం	0
	$\dot{\infty}$		$\begin{aligned} & \text { No } \\ & \text {-is } \end{aligned}$	Noo N－̈	∞
	$\begin{aligned} & \mathbf{N} \\ & \mathbf{0} \end{aligned}$	$\begin{aligned} & \text { Nom } \\ & \text { Nicioc } \end{aligned}$	*im	 	∞
か○ーにい －iNoin	∞	$\begin{aligned} & \text { Nown } \\ & \text { © in in } \end{aligned}$	1∞	サNMOONMNHON：O 	$\stackrel{\rightharpoonup}{\circ}$
いやめNか 	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	いNのーロ ベペ일	$\begin{array}{ccc} \infty \\ \infty & 0 \\ \hline \end{array}$	 	$\begin{aligned} & \infty \\ & \dot{\boldsymbol{i}} \end{aligned}$
－	오		$\begin{aligned} & \infty \infty \\ & \text { Ni ๗ } \end{aligned}$	 	$$
$\infty 0$ io $\rightarrow i \infty$	$\stackrel{\rightharpoonup}{0}$	WNon	1		$\stackrel{0}{\circ}$
	$\begin{gathered} \infty \\ \infty \end{gathered}$		$\rightarrow T$	 	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$
000000	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$		+゙ゃ	 	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$
	$\underset{\sim}{\infty}$	ONON	$\stackrel{0}{0}$	 	$\stackrel{\oplus}{-1}$
$\infty 00000$ －がべの	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 요 } \infty \\ & \text { लin } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { Nici } \end{aligned}$	$\infty \infty \infty$ の 	$\underset{\infty}{\infty}$
$\infty \pi \infty \infty$ $\rightarrow \infty \infty^{\circ} \infty^{\circ}+\cdots$	$\begin{aligned} & \text { か } \\ & \dot{y} \end{aligned}$				งู่
im	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	గిన్నాథ			\pm
imio	N	∞－NT －rn－	1	$\cdots{ }_{\sim}^{\infty}$（ioso	$\stackrel{-1}{\infty}$
一内かんの ம்がうか	$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \end{aligned}$	000 が 	－ ค่ง	NOWnNONDOWm im 	$\stackrel{\infty}{\infty}$
－NO 	$$	ががか が○○゚か	$\begin{aligned} & i \infty \\ & i \infty \\ & \hline \end{aligned}$		＋

In order to give a more precise expression of the differences in the rates of impairments in these occupations as a whole, compared with the population generally, the rank of the "business" group, in comparison with the 28 occupations, has been determined for each impairment. The rates for the "business" group, which is a very large one, are not particularly high or low, and so may be taken as typical of the examinations in general. It should be pointed out that the average age of workers in the trades represented in this study is about the same as that of persons in the "business" group.

The rank was determined prior to applying the criterion just discussed, in order to avoid having an unequal number of items in the different arrays. Table 3 gives also the "business" rate and the average occupational rate (median after applying criterion), with the ratio of the median rate to the "business" rate.

Table 3.-Rank of "business" in comparison with the 28 occupations ${ }^{1}$ for "field" data

Nature of impairment, disease, or symptom	Rank ${ }^{1}$	Ratio of occupational to business rate (business $=100$)	Rate	
			Business	Occupational ${ }^{2}$
Carious teeth, septic roots	28	147	12.1	17.8
Pyorrhea (definite)	27	144	4.8	6.9
Slightly infected gums.	26	125	10.4	13.0
Backache.	26	149	3.7	5.5
Missing teeth	25	122	6.0	7.3
Albuminuria-slight	25	111	14.1	15.7
Habitual use of laxatives.	24	109	25.8	28.1
Arterial thickening-slight	23	123	7.3	9.0
Frequent colds.-	23	117	14.9	17.4
Constipation..	23	109	32.8	35. 9
Pus in urine.	23	112	9.4	10.5
Insomnia	22	130	1.0	1.3
Abnormal reflexes	22	112	5.2	5.8
Defective hearing	22	118	9.2	10.9
Dizziness.	22	112	6.7	7.5
Bronchitis, emphysema	22	114	1.4	1.6
Casts, hyaline, in urine.-.	22	109	8.8	9.6
Defective vision, uncorrected	21	116	20.1	23.3
Adenitis	20	125	2.8	8.5
Weak inguinal rings	20	109	4.3	4.7
	20	120	5. 0	6. 0
Enlarged heart-...............................--	19	119	3.1 2.1	2. 5
Hernia....	19	104	4.8	5.0
Frequent or painful urination	19	109	8.0	8.7
Wax in ears.	19	104	9.6	10.0
Arterial thickening-moderate and marked	18	121	1.9	2.3
Gastric disturbances.	18	109	7.8	8.5
Albuminuria-marked amount	18	111	1.8	2.0
Varicose veins.	18	114	3.7	4.2
Tuberculosis-suspected or actual	18	109	1.1	1.2
Organic val vular heart conditions.	18	104	2.8	2.9
"Acid stomach".-...	18	106	10.5	11.1
Deflected septum, marked.	18	102	4.1	4.2
Tenderness in region of appendix	17	103	3.1	3.2
Functional murmur.	16	102	4.9	5.0
Sugar in urine, trace or definite	15	102	5. 7	5.8
High blood pressure (20 mm . and more above average)	14	96	5.5	5.3
	14	99	8.1	8.9
Enlarged thyroid, simple goiter	13	100	2.4	2.4
Enlarged, diseased, or buried tonsils	13	98	27.6	27.0

${ }^{1}$ Prior to applying $50 \sqrt{\mathrm{pq}}$ criterion.
${ }^{1}$ Median rate after applying $50 \sqrt{\mathrm{pq}}$ criterion.

Table 3.—Rank of "business" in comparison with the 28 occupations for "field" data-Continued

Nature of impairment, disease, or symptom	Rank	Ratio ofoccupa-tional tobusinessrate(busi-pess $=100)$	Rate	
			Business	Occupational
Nasopharyngitis.			8.5	
Hemorrhoids - rhinit (enlarged turbinates)	${ }_{12}^{13}$	96 97 98	12.0	11.5
Chronic skin affections....----...	12	95	9.7	9.2
Nervousness	11	97	6.9	6.7
Use of patent medicines	11	${ }_{88}^{96}$	10.0	9. 6
Rapid pulse.	11	88	6.0	5.3
Deflected septum, slight.	10	97	25.0	24.2
Enlarged prostate	10	85	4.8	咗
Heavy dentistry (X ray advised)	7	91	34.7	31. 5
	$\begin{array}{r}5 \\ 2 \\ \hline\end{array}$	82 85 85	2.8 15.7	2.3 13.4
Defective vision, corrected....-...-..............	1	62	${ }_{29.6}^{15}$	18.4

It will be found that for carious teeth, for instance, the "business" group as a whole ranks twenty-eighth. This means that all but one of the 28 occupations under consideration had higher rates for carious teeth than the average rate for the "business" group. In other words, the impairments listed in the upper part of the table (down to rank 15) are those for which the rates among the industrially employed were above average. In the lower part of the table will be found the impairments for which the contrary was true.

A very clear impression is left by this table, i. e., that excessively high impairment rates in a few of these occupations which involve definite hazards are not sufficient to account for the generally higher rates which are found to be characteristic of the industrial workers as a whole when compared with the other persons analyzed. There are more than 10 findings and symptoms for which the rates in nearly every occupation are above the average for "business." In other words, one must come to the conclusion that where there is a marked difference in health and physical condition between these groups it is the result of various factors associated with social, educational, or economic causes.

For the purpose of an adequate comparison with the impairment rates of the "business" group, a ranking of the occupations according to the magnitude of the rates was desirable. For economy of space, comparison is limited to those occupations which had rates definitely above the "business" average for a given impairment. To determine this question, again, an arbitrary standard was required. A standard based directly on the probable error involved too much labor and was not considered satisfactory, since it would omit from consideration a large number of occupations which, on the average, were significantly
above the "business" level." The method chosen was very simple and, if arbitrary, had the advantage of being purely objective. After exclusion of rates which did not meet the criterion of size of occupational groups, the remaining rates were ranked for each impairment according to magnitude. The "business" rate was then inserted in numerical order in this array. The occupations falling below the "business" rate were counted, and then the same number immediately above the "business" rate were eliminated, together with those below it. All higher than these were included in the table. This method, of course, was based on the assumption that in a chance distribution there will be as many items above the average as below it. Again it must be stressed that no definite implication is involved that all of the occupations remaining after this standard is applied are significantly high, or that none left out is significantly high; but that approximately the number of occupations included in the table are significantly above the "business" level.

In the case of several of the smaller occupational groups it is realized that the rates are somewhat uncertain. For the same reason there is a tendency for some of the occupations representing the smaller groups to appear at the top simply as a result of chance fluctuation. The rates at the top are to be taken as somewhat exaggerated. However, the general tendencies of the data appear to be unmistakable.

A careful consideration of Table 4 will indicate which occupations explain the excess among industrial workers as compared with the "business" average, but the impression to be derived will undoubtedly ke that previously stated, viz, an excess for the industrial worker generally rather than outstandingly high rates for particular occupations. However, some differences for specific impairments are of interest.

For uncorrected defective vision, three occupations are outstand-ing-garment workers, cutters, and tailors. It may be remarked that the same is true when corrected and uncorrected vision are combined.

For defective hearing a very interesting result is found: The first six occupations in the list are those in which noise is a definite factor. This is particularly true for blacksmiths, who have a rate

[^2]very much in excess of that in any other occupation, and nearly three times that of the "business'" average.

For carious teeth and pyorrhea, painters have the highest rates, a fact which is possibly associated with lead poisoning.

For hernia, it is observable that none of the occupations requiring arduous labor is above the "business" level-an indication of the factor of selection which is present.

For constipation, it is observable that chiefly the sedentary occupations appear at the top of the table.
Table 4.-Ranking of occupations which have rates significantly above those of the "business" group

Occupation	Impair- ment rate	Ratio to average	Number of persons

RESPIRATORY

Tailors.	7.1	154	1,053
Miners.	6.6	143	288
Garment operatives.	6.3	137	268
Waiters and hotel servant	6.0	130	282
Painters.	5.8	128	623
Butchers.	5.7	124	564
Printers.	5.4	117	977
Telephone and telegraph operators	5.4	117	410
Woodworkers	5.1	111	396
Factory workers (unclassified, light)	4.6	100	611
Metal workers	4.6	100	347
Business.	3.8	83	41,667
Bronchitis, emphysema: Tailors			
Butchers.	2.8	175	564
Plumbers, pipe and steam fitters	2.1	131	829
Factory workers (unclassified, light)	2.0	125	611
Firemen, police	1.8	113	440
Carpenters	1.8	113	1,673
Business.	1.4	88	41,667
Deflected septum, moderate or marked:			
Street railway employees.	5. 9	140	287
Chauffeurs	5.7	136	595
Painters.-	5.5	131	623
Plumbers, pipe and steam fitters	5.2	124	829
Frequent colds:			
Bricklayers	21.4	121	298
Chauffeurs.	20.5	118	595
Factory workers (unclassified, light)	19.4	111	611
Metal workers	19.3	111	347
Woodworkers	18.9	109	396
Telephone and telegraph operators	18.8	108	410
Textile mill operators.	18.8	108	207
Electricians-	18.5	106	1,014
Cutters (cloth)	18.3	105	327
Blacksmiths	18.0	103	172
Shoe factory operatives	17.7	102	532
Butchers.	17.5	101	564
Miners.	17.4	100	288
Machinists (office, store)	17.4	100	3,070
Plumbers, pipe and steam fitters	17.1	98	, 829
Business.	14.9	86	41,667

DIGESTIVE-TEETE

Carious teeth, septic roots:			
	23.4	131	623
Bricklayers.	23.2	139	298
Domestic help	22.9	129	188
Blacksmiths	21.5	121	172
Firemen (stationary)	21.1	119	617
Carpenters.--	21.0	118	1,673
Ironworkers-..-.---	20.5 20.4	115	332 889

Table 4.-Ranking of occupations which have rates significantly above those of the "business" group-Continued

Occupation	Impair- ment rate	Ratio to average	Number of persons

DIGESTIVE-TEETH-Continued

Carious teeth, septic rooots-Continued.
Factory workers (unclassified, light)
Waiters and hotel servants
Foundry workers.
Garment operatives
Chauffeurs
Woodworkers.
Miners -
Butchers
Shoe-factory operatives
Textile-mill operators
Street-railway employees
Machinists (office, store)
Tailors
Electricians.
Metal workers
Printers.
Cutters (cloth)
Barbers
Business
Missing teeth:
Cutters (cloth)
Carpenters
Domestic help
Street-railway employees
Painters.
Factory workers (unclassified, light)
Firemen (stationary)
Bricklayers.
Printers
Shoe factory operatives
Garment operatives
Plumbers, pipe and steam fitters
Chauffeurs
Electricians
Firemen, police
Miners.
Ironworkers
Business
Pyorrhea (definite):
Painters.
Street-railway employees
Waiters and hotel servants
Firemen (stationary)
Carpenters
Garment operatives
Tailors.
Plumbers, pipe and steam fiters
Ironworkers
Miners.
Butchers
Barbers
Bricklayers
Shoe-factory operatives
Domestic help
Machinists (office, store)
Telephone and telegraph operators
Chanffeurs
Factory workers (unclassified, light)
Woodworkers
Metal workers.
Textile-mill operators
Printers
Business
Slightly infected gums:
Tailors.
Garment operatives
Blacksmiths.-
Bricklayers
Waiters and hotel servants
Domestic help
Plumbers, pipe and stcam fitters
Factory workers (unclassified, light)
Chauffeurs
lronworkers.
Painters
Printers
Cutters (cloth)

20.0	112	611
19.1	107	282
19.1	107	173
18.3	103	268
18.3	103	595
17.9	101	396
17.7	99	288
17.4	98	564
17.3	97	532
16.9	95	207
16.7	94	287
16.1	90	3,070
15.9	89	1,053
15.0	84	1,014
15.0	84	347
14.9	84	977
14.7	83	327
13.3	75	721
12.1	68	41,667
10.1	138	327
9.9	136	1,673
9.6	132	188
8.4	115	287
8.3	114	623
8.2	112	611
8.1	111	617
8.1	111	298
7.9	108	977
7.5	103	532
7.5	103	268
7.4	101	829
7.4	101	505
7.3	100	1,014
7.3	100	440
7.3	100	288
7.2	99	332
6.0	82	41, 667
11.1	161	623
10.1	146	287
9.9	143	282
9.4	136	617
9.3	135	1,673
9.0	130	268
8.3	120	1,053
8.0	116	829
7.8	113	332
7.3	106	288
7.3	106	564
7.2	104	721
7.0	101	298
6.8	99	532
6.4	93	188
6.3	91	3, 070
6.1	88	410
6.1	88	595
6.1	88	611
5.8	84	396
5.8	84	347
5.3	77	207
5.2	75	977
4.8	70	41,667
21.6	166	1, 053
17.5	135	268
16.3	125	172
16.1	124	347
15.8	122	298
14.5	112	282
14.4	111	188
14.2	109	829
14.1	108	611
13.8	106	595
13.6	105	332
13.6	105	623
13.5	104	977
13.1	101	327

Table 4.-Ranking of occupations which have rates significantly above those of the "business" group-Continued

Occupation	Impair- ment rate	Ratio to average	Number of of persons

DIGESTIVE-TEETH-Continued

8Hightly infected gums-Continued.	12.9	99	1,673
Carpenters--	12.6	97	721
Street-rallway employees.	12.5	98	287
Butchers......	12.4	95	564
Firemen, police.	12.3	95	440
Firemen (stationary	12.2	${ }_{93}$	${ }_{1} 173$
Business...-.	10.4	80	41,667

DIGESTIVE-OTHER

Gastric disturbances:			
Street rallway employees.	12.2	144	287
Fireman (stationary)	11.2	132	617
Telephone and telegraph op	10.0	118	410
Blacksmiths.	9.9	116	- 172
Plumbers, pipe and steam	9.8	115	
Business.	7.8	92	41,667
"Acid stomach":			
Metal workers	13.8	124	347
Garment operatives	13.8	124	268
Street railway employees	13.6	123	287
Chaureurs.	13.4	121	595
Firemen, police.	13.2	119	440
Tailors--	12.8	115	41,667
Oonstipation:			
Garment operatives	48.1	134	268
Tailors.	42.2	118	1,053
Cutters	40.1	112	327
8treet railway employees.	39.4	110	287
Telephone and telegraph op	39.3	109	410
Firemen, police	38.9 38.4	108 107	440 398
Barbers.	38.1	106	721
Waiters and hotel servants.	37.6	105	282
Paintars............	37.4	104	623
Factory workers (unclassified	37.0	103	611
Electricians.	36.4	101	1,014
Domestic holp.	36.2		
Printars-...-	36.1	100	
Business...	32.8	91	41,667
Habitual nse of laxatives:			
Street railway employees.	34.8	124	
Iron workers.	34.0	121	332
Firemen, police	32.5	116	
Telephone and telegraph op	32.4 31.8	115	721
Tailors.	31.5	112	1,053
Woodworkers	31.3	111	396
Waiters and hotel servants.	31.2	111	282
Painters.	30.7	109	623
Bricklayers	30.5	109	
Garment operatives.	30.2	107	
Metal workers.....	30.0	107	347
Electricians.	29.2	104	
Domestic help.	28.2	100	188
Machinists (office, store)	28.1	100	
Textile mill operators-.		100 99	532
Shoe factory operatives	27.8 27.6	98	595
Business.	25.8	92	41, 667

CIRCULATORY

Enlarged beart:			
Woodworkers.	3.5	120	338
Iron workers.			
Carpentars	3.0	120	1,673
Butchers.	3.0	112	53
Shoe factory op	2.8	112	632 440
Firemen, police	2.7	108	41,667

Table 4.-Ranking of occupations which have rates significantly above those of the "business" group-Continued

Occupation	Impair- ment rate	Ratio to average	Number of persons

CIRCULATORY-Continued

Organic valvular heart disease:			
Street railway employees..	4.9	169	287
Butchers.	4.3	148	564
Woodworkers	4.3	148	396
Bricklayers.	4.0	138	298
Iron workers.	3. 6	124	332
Business.	2.8	97	41,667
Functional murmur:			
Chauffeurs.-.-----	8.1	162	595
Woodworkers.---	6.3	1	396
Firemen, police	6. 1	122	440
Metal workers.	3.5	152	347
Cutters (cloth) -----	3.4	148	827
Plumbers, pipe and steam	3.1	135	829
Tailors---	3.1	135	1,053
Carpenters	2. 9	128	1,673
Arterial thickening, slight:			
Garment operative	112.4	149 139	1,053
Waiters.	12.1	134	282
Bricklayers	11.4	127	298
Painters.	11.2	124	623
Plumbers, pipe and steam	10.7	119	829
Carpenters.-	10.6	118	1,673
Butchers.	10.1	112	564
Metal workers.	9.8	109	347
Textile mill operators	9.7	108	207
Factory workers (unclassifi	9.7	108	611
Chauffeurs.	9.7	108	595
Firemen (stationary)	9.6	107	617
Iron workers.-	9.0	100	332
Domestic help	9.0	100	188
Garment operatives	10.4	196	268
Tailors	8.7	164	1,053
Butchers.	8.0	151	564
Cutters (cloth)	7.6	143	327
Shoe-factory operatives	7.0	132	532
Chauffeurs	6.4	121	595 396
Business..	6. 0	113	41,667

GENITO-URINARY

Granular casts in urine:			
Firemen (stationary)	6.9	115	582
Painters.	6.9	115	582
Waiters and hotel servan	6.8	113	264
Telephone and telegraph	6.8	113	384
Miners.	6.8	113	251
Woodworkers	6.8	113	370
Shoe-factory operatives	6.6	110	487
Firemen, police	6.2	103	402
Business.	5.0	83	38, 176
Hyaline casts in urine: 13.9 145 165			
	13.9	145	165
Miners-.---	12.7	132	251
Shoe-factory operatives	12.3	128	487
Bricklayers-.	12.3	128	284
Foundry worke	11.4	119	167
Wlacksmiths	11.3	118	151
	10.6 10.4	1108	${ }_{968}^{264}$
Butchers.	10.0	104	512
Street-railway employees	9.9	103	262
Electricians..	9.9	103	949
Ironworkers.	9.7	101	309
Telephone and telegraph	9.6	100	384
Barbers	9.6	100 99	669 582
Business.-	8.8	92	38, 178

Table 4.-Ranking of oceupations which have rates significantly above those of the "business" group-Continued

Occupation $\left.\quad$\begin{tabular}{c|c|c}
Impair-

ment

rate

\quad

Ratio to

average

 \right\rvert\,

Number

of

persons
\end{tabular}

GENITO-URINARY-Continued

Pus in urine:			
Domestic help.	14.5	138	165
Waiters and hotel servants	14.0	133	284
Bricklayers.	13.4	128	284
Shoe-factory operatives	12.7	121	487
Firemon, police.	11.4	109	402
Ironworkers.	11.3	108	309
Firemen (stationary)	11.3	108	582
Barbers.	11.2	107	669
Cutters (cloth)	11.2	107	303
8treet-railway employees	11.1	116	282
Woodworkers--	10.8	103	370
Chauffeurs.	10.7	102	55
Plumbers, pipe and steam	10.6	101	752
Garment operatives.	10.5	100	257
Painters	10.5	100	582
Business.	9.4	co	38, 176
Frequent or painful urination:			
Street-ranway employees.-	12.7 12.5	146 144	173 287
Metal workers...	11.2	129	347
Miners.-	10.8	124	288
Chauffeurs	10.7	123	¢95
Telephone and telegraph op	10.5	121	410
Painters.-..........-	10.4	120	623
Textile-mill operators.	10.1 8.0	116 92	207 41,667

MISCELLANEOUS

Cutters (cloth)	35.8	154	327
Tailors.	34. 7	149	1,053
Butchers.	29.8	128	564
Waiters and hotel servants	29.4	120	282
Painters.	25.2	112	623
Plumbers, pipe and steam fitters	25.7	110	829
Factory workers (unclassified, light)	25.0	167	611
Metal workers	24.8	106	347
Printers.	24.5	105	977
Firemen, police	23.9	103	440
Domestic help	23.9	103	188
Defective hearing:			
Carpenters.	17.2	158	1,673
Foundry workers	16.2	149	173
Ironworkers.	15.4	141	332
Metal workers	14.4	132	347
Textilo-mill operators.	13.5	124	207
Plumbers, pipe and steam fitters	13.4	123	829
Bricklayers.	13. 1	120	298
Cutters (cloth)	13.1	120	327
Machinists (office, store)	12.0	110	3,070
Firemen (stationary)	11.7	107	617
Garment operatives.	11.2	103	268
Telephone and telegraph operators-	11.2	103	410
Factory workers (unclassified, light)	11.0	101	${ }_{6}^{611}$
Wax in ears:			
Ironworkers.	12.7	127	332
Garment operatives.	12.3	123	268
Printers.-	11.9	119	977
Factory workers (unclassified, light)	11.9	119	611 595
Chauffeurs.....................-...-.	11.6	116	595
Bricklayers.	11.4	114	298
Firemen (stationary)	11.2	112	617
Metal workers..	11.2	112	347
Business	9.6	96	41,667
Adenitis:	5.9	169	623
Printers	5.2	149	977
Garment operatives	4.9	140	${ }^{268}$
Carpenters.-.	4.6 4.8	131 123	1,673 327

Table 4.-Ranking of occupations which have rates significantly above those of the "business" group-Continued

Occupation	Impair- ment rate	Ratio to average	Number of ofrsons

MISCELLANEOUS-Continued

For varicose veins, on the contrary, the occupations above the "business" level appear to be those of workers who are customarily on their feet.

Backache may not be a particularly important symptom, but it is of interest to note that the rate is highest among miners, who usually work in a stooping position, and also among other persons doing arduous work.

The rates for flat feet are not included, because data for the "business" group were not available for this condition. Reference to Table 2 will show, however, that the rates for certain occupations are excessive, particularly garment workers, waiters, cutters, domestic help, tailors, barbers, and butchers.

In addition to manifest variations in the prevalence of specific impairments in different occupations, there is the broader problem of possible differences in general physical condition as indicated by the impairment rates as a whole. Unfortunately such comparisons are difficult, because of the high frequency of relatively unimportant conditions. The total number of impairments per person is therefore of little meaning. It is equally impossible to select any group of serious impairments, since so much difference of opinion must exist in regard to any classification used, and since there is usually no information as to the seriousness of a condition as recorded for a particular individual. It seems preferable to make the comparison purely on the basis of an examination of the rates for individual conditions as given in Tables 2 and 3.

In this connection it is necessary to remember that there will be more variation in the rates for occupations with small populations, and therefore a larger percentage of such occupations will show high rates, quite apart from any true differences among the occupations. There will also be more relative variation in the rates for the less common conditions. Furthermore, any differences which may be found will be subject to much difficulty of interpretation, because of the pronounced effect of selection. Persons with certain impairments tend to drift into occupations where the impairment is not a definite handicap.

An examination of Tables 2 and 3 in the light of these comments gives the unmistakable impression that, aside from the few impairments considered above, the general level of prevalence is about the same for all of the occupations. This fact is again an indication that social, economic, or educational differences are mainly responsible for the variations in the prevalence of impairments noted in this and the preceding study. These distinctions are apparently common to all the occupational groups which have been analyzed. In the case of a few of the occupations, it is suggested that a tendency toward higher or lower rates than the average may reflect selection or the $91026^{\circ}-32-2$
presence of differing social or economic levels within the skilled trade group as a whole.

Generally speaking, the occupational groups included in this study were not large enough to permit an adequate analysis of the rates in specific age groups. A preliminary analysis brought out the fact that the age curve of the impairments for a particular occupation agrees quite closely with that for the occupations generally. It was also evident that the occupational differences brought out in the previous discussions are present at each age.

One element of the examination which has been given little consideration in this paper is the blood pressure. In preparing the punch cards the actual blood pressure of the individual was not recorded. Instead, his deviation in millimeters from a standard for persons of his age was punched in broad groups, viz, 25 and more millimeters under the average, 15 to 24 under, 14 under to 19 above, 20 to 39 above, 40 to 59 above, 60 and more above. It is desirable to determine from the resulting distribution of deviations what the average blood pressure is for each occupation. An estimated average ${ }^{6}$ based on the frequency distribution of the deviations was secured for each occupation. Table 5 gives the averages obtained in this way for each of the 28 occupations, and for the "skilled trade" and "business" groups. It is found that the variation in these averages from occupation to occupation is remarkably slight. Domestic help has the highest average (129.2) and metal workers the lowest (125.2). The "business" average is lower than most of the individual occupations, but again the difference is slight.

Table 5.-Average systolic blood pressure a (20-59) by occupation

Occupation	Milli-	Occupation			
meters			$	$	Milli-
:---	:---				
meters					

[^3]For the larger occupations the same averages have been determined for three broad age groups. They are found to increase with age in the expected way, but the differences among the occupations are quite insignificant.

Table 6.-Average systolic blood pressure ${ }^{1}$ by age for 15 occupations

Occupations		20-34	35-44	45-59
Firemen, police.		123.7	127.7	136. 2
Factory workers (unclassified, light)		125.0	125. 1	135. 3
Firemen (stationary)		125.3	127.0	133.9
Shoe-factory operatives.		123.4	127.0	134. 6
Painters.-		124.9	125. 1	134.6
Chauffeurs.		123. 1	125.5	139.5
Machinists (office, store)		124.6	126.0	133.3
Butchers.		124.1	126. 1	131.0
Printers.		124.5	124. 0	133.5
Plumbers, pipe and steam fitters		123.1	125.4	133.4
Barbers.-.		122. 1	125.4	133.0
Electricians.		123. 6	125.1	134.0
Telephone and telegraph operators.		123.6	123. 4	132.1
Tailors.-.----------------		121.8	125. 4	134. 2
Carpenters.		125.0	124.8	131.3
Skilled trade.		123.9	125. 7	132.7
Business.		122.7	125.0	132.1

${ }^{1}$ Obtained as described in footnote 6, p. 18.

SUMMARY

In a previous study it was shown that the rates of physical impairment in a group of skilled workers tended to be definitely higher than in other groups (professional, business, agricultural). The present study was undertaken to determine, in so far as possible, whether the effects of specific occupational factors are sufficient to account for these higher rates. The data employed were the medical examinations furnished to white, native-born, male policyholders as a part of the health service of life-insurance companies. The examinations were conducted by the Life Extension Institute, and the analysis is limited to the first examinations made on each individual and to those made outside of the "head" offices of the Institute. In all, 17,294 persons in 28 specific occupations were included.

It was found that the higher rates characteristic of the industrial workers were not to be explained, except in a few instances, as being due to the hazard of any specific occupation. On the contrary, these higher rates seemed to be the result of various factors associated with social, educational, or economic causes, and to be present, in more or less degree, in every specific occupation studied. Differences among the industrial occupations did not appear to be of great moment, and when found seemed to reflect either selection (the tendency of workers with certain impairments to drift into occupations where such impairments would not serve as a handicap) or the presence within the industrial occupations themselves of social or economic differences.
Appendix Tably 1．－Number of impairments by cause in each specific oecupation

cyod＇romand	
seozerdo qders 	¢్ర0
sıaqreg	内の
smmeyneyo	
dipq эpqsomod	
puz exinid ureys	
sлaквгуоия	
sryuadrs	
Esayute	
（q¥op）sxı7n	
siolipu	
eroyerodo unum શ！pred	
	二－¢ ¢ ¢ ¢－
sяуломроом	
ssazrom［87ent	
sप7！	\％
	∞ ¢ ¢ ¢
кезломпол	F以
عงロu！｜	

Appendix Table 1．－Number of impairments by cause in each specific occupation－Continued

mitod tramera	
	¢ \＄\％
e⿴囗บケทng	Ф－¢ ¢
	二め ర్ciob
smayneva	
	ल0 न－্রN ¢¢，
pus spong ursens	
ssosplixurg	＊＊ন－${ }^{\text {－}}$
ssequedso	
Esonulied	
（q7op）suatio	－
SHOTPI	
80apruedo queursp	
8167ulx	
	¢¢్ర M్రk\％
stoquedo m！	NM monk
	ه凶 ఫ－
sroymompoom	F－
sxoyrom［b7exi	
вгэжлом ¢грипол	
	N® ¢ ¢ ¢
влеп！	

Appendix Table 2.-Number of impairments by cause in each specific occupation

Appendix Table 2.-Number of impairments by cause in each specific occupation-Continued

SEX DIFFERENCES IN THE PREVALENCE OF DENTAL CARIES ${ }^{1}$

Based on 12,435 Oral Examinations by Dental Personnel in Georgia, Illinois, Missouri, and Hagerstown, Md.

(STUDIES IN DENTAL CARIES No. 2)
By Amanda L. Stoughton, Acting Assistant Surgeon, and Verna Thornhill Meaker, Dental Hygienist, United States Public Health Service

In a previous study, ${ }^{2}$ the prevalence of dental caries in a group of school children of different ages was discussed. Most of the oral examinations were made by one experienced dental hygienist; but since she and the dental hygienist who made the remainder of the examinations had previously worked out a standard technique, their findings have been considered comparable and have been combined.

The first paper, in which is given a more detailed discussion of the field work, considered the prevalence of several dental conditions among children of both sexes. In the present study, the data for boys and girls are treated separately.

The examination records were so arranged that both temporary and permanent teeth could be cbarted. All carious teeth were designated, a special subdivision being made, called "remaining roots," which included teeth having crowns which were entircly carious, those having the pulp involved, and those with fistulæ. Instead of the number of individual fillings, the number of filled teeth was charted. The term "total past decay" when applied to permanent teeth includes missing as well as decayed and filled teeth. All the teeth, whether temporary or permanent, which were present in the child's mouth at the time of examination are included in the term "all teeth."

TEMPORARY TEETH

Although the percentages of children of both sexes baving one or more decayed or filled temporary teeth decline rapidly after the first few age groups, the percentages remain higher among the boys after the 7 -year group. (Table 1, fig. 1.) Excepting among 6-year-old children, more boys than girls had five or more temporary teeth decayed or filled. Undoubtedly, the fact that the percentage of children with decayed temporary teeth decreases with age is due to their gradual replacement by permanent teeth. It may be that boys lose their temporary teeth somewhat later than girls.

[^4]Tably 1.-Condition of temporary teeth of boys and girls of each age from 6 to 14 years

Age	Boys								Gir's							
	$\begin{aligned} & \text { Totai } \\ & \text { chil } \\ & \text { dren } \end{aligned}$	Decayed or filled		Decayed		Remaining roots		$\begin{gathered} \text { Fis- } \\ \text { Fulse } \\ \text { 1 or } \\ \text { more } \end{gathered}$	Total children	Decayed or filled		Decayed		$\begin{aligned} & \text { Remain- } \\ & \text { ing roots } \end{aligned}$		$\begin{gathered} \text { Fis- } \\ \text { tualae, } \\ 1 \text { or } \\ \text { more } \end{gathered}$
		$\left\|\begin{array}{c\|} 1 \\ \text { morer } \end{array}\right\|$	$\begin{array}{\|c\|} 5 \text { or } \\ \text { more } \end{array}$	$\begin{aligned} & 1 \\ & \text { more } \\ & \text { r } \end{aligned}$	$\left\lvert\, \begin{aligned} & 8 \text { or } \\ & \text { more } \end{aligned}\right.$	$\begin{array}{ll} 1 & \text { or } \\ \text { more } \end{array}$	5 or more			$\left\lvert\, \begin{gathered} 1 \text { or } \\ \text { more } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 5 \text { or } \\ \text { more } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 1 \text { or } \\ \text { more } \end{gathered}\right.$	($\begin{gathered}5 \text { or } \\ \text { more }\end{gathered}$	1 or	$\begin{gathered} 5 \text { or } \\ \text { more } \end{gathered}$	

NUMBER

6.	451	394	208	388	263	148	20	47	462	404	277	399	272	160	9	47
7.	541	490	320	485	309	200	16,	32	581	529	323.	521	316	211	14	42
8.	556	512.	307	600	292	224	17	42	560.	504	297.	498.	283	205	10	40
9.	673	607	289	595	270	249	20	24	662	553	195.	536	177	171	10	23
10	804	632.	175	020	168	236	5	19	848	855	119.	540	113	176	6	18
11.	849	475	84	469	83	181	7	13	853	346	43	337	42	126	1.	7
12.	659.	235	24	235	22	88	3	2	702	165	10	162	10	69	2	8
13.	595	106	6	103	6	45°	0	0	588	66	2	64	2	27	0	1
14.	400	31	0	30	0	20^{\prime}	0	0	367	14	0	14	0	4	0	0

PER CENT

6.	100.0	87.4	59.4	86.0	58.3	32.8	4.4	10.4	100.0	87.4	59.9	88.4	58.9	34.6	1.9	10.2
7.	100.0	90.6	59.1	89.6	57.1	37.0	2.0	5.9	100.0	91.0	55.6	89.7	54.4	36.3	2.4	7.2
8.	100.0	92.1	55. 2	89.9	52.9	40.3	3.1	7.5	100.0	90.0	53.0	88.6	50.5	36.6	1.8	7.1
9	100.0	90.2	42.9	88.4	40.1	37.0	3.0	3.6	100.0	83.5	29.5	81.0	28. 7	25.8	1.5	3.5
10	100.0	${ }^{78.6}$	21.8	77.4	20.9	29.3	.6	2.4	100.0	65.4	14.0	63.7	13. 3	20.7	. 7	2.1
11.	100.0	${ }^{65.9}$	9.9	55.2	9.8	21.3	. 8	1.5	100.0	40.6	5. 0	39.5	4.9	14.8	$\cdot 1$. 8
12	100.0	35.7	3.6	35.7	3.3	13.3	. 5	. 3	100.0	23.5	1.4		1.4	9.8	. 3	- $\frac{1}{2}$
13	100.0	17.8	1.0	17.3	1.0	7.6			100.0	11.2	. 3	10.9	. 3	4.6	. 0	. 2
	100.0								100.0							

TEMPORARY TEETH

Figore 1.-Prevalence of total past decay and untreated caries in temporary teeth of boys and gtris at successive years of age

Since the number of temporary teeth filled is so small, the graphs of the percentages of children having unfilled carious temporary teeth are practically the same as those of children having temporary teeth decayed or filled. The percentages of boys having temporary teeth badly decayed (remaining roots) are also higher than the corresponding percentages of girls in every age except the 6 -year group. (Fig. 2.) A higher percentage of boys than of girls have five or more temporary teeth so badly decayed as to be classed as "remaining roots." The proportion of children having one or more temporary teeth with fistulæ is practically the same for both scxes in each age group.

TEMPORARY TEETH

Figure 2.-Prevalence of marked caries and fistulae in temporary teeth of boys and girls at successive years of age

Table 2.-Condition of temporary teeth of boys and girls in three-year age groups from 6 to 14 years

Age and sex	Totalnumberof chil-dren	Per cent having decayed or filled					Per cont having remaining roots				
		$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 3 \text { or } \\ & \text { more } \end{aligned}$	5 or more	$\begin{gathered} 7 \text { or } \\ \text { more } \end{gathered}$	$\begin{gathered} 9 \text { or } \\ \text { more } \end{gathered}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$3 \text { or }$ more	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{gathered} 7 \text { or } \\ \text { more } \end{gathered}$	$\left\lvert\, \begin{gathered} 9 \text { or } \\ \text { more } \end{gathered}\right.$
6 to 8 BOYS											
9 to 11	2,326	73.7	45.9	23.6	87.8	2.9	28.6	6. 6	1.4	1.2 .3	. 1
12 to 14.	1,654	22.5	5.7	1.8	. 3	. 1	9.2	1.3	. 2	.1	
6 to 8.........	1,603	89.6	74.9	56.0	35.2	16.2	35.9	8.6	21	. 4	. 1
9 to 11	2,363	61.5	32.7	15.1	6. 9	1.7	20.0	3.9	. 7	. 1	
12 to 14..	1,657	14.8	3.4	. 7	. 1	. 1	6.0	. 5	. 1	. 1	

From the accompanying graphs, it is evident that the relative incidence of various dental defects among boys and among girls is not the same in each age group. Instead of showing rates for each age separately, the children were divided into 3-year age groups and the percentage of children in these groups who had one or more, three or more, etc., teeth showing the defect in question are given in Table 2 and are plotted in Figure 3.

Figure 3.-Extent of total past decay and marked caries in temporary teeth of boys and girls in 3-year age groups

In all three groups a greater proportion of boys than of girls had temporary teeth decayed or filled, but the difference was much more marked in the last two groups than among the youngest children.

In the 6 to 8 year group, the percentage of boys having badly decayed temporary teeth (remaining roots) is somewhat higher than the corresponding percentage of girls. In the 9 to 11 and 12 to 14 year old groups a much larger proportion of boys than girls have teeth nearly destroyed by caries (remaining roots).

Table 3．－Condition of permanent teeth of boys and girls of each age from 6 to 19 years

NUMBER

Age	Boys									Girls								
	$\begin{aligned} & \text { Total } \\ & \text { chil- } \\ & \text { dren } \end{aligned}$	Decayed， missing， or filled		Dccayed			Filled			Total chil－ dren	Dccayed， missing， or filled		Decayed			Filled		
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { a } \\ & \text { ó } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{B} \\ & b \\ & \vdots \end{aligned}$		8 B B － -1				$\begin{aligned} & \text { ! o } \\ & \text { 品 } \\ & \text { o } \end{aligned}$	\％	$\begin{aligned} & \text { Q } \\ & \text { a } \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { 日 } \\ & \text { o } \\ & \infty \end{aligned}$		8 0 0 ¢ －		
	451	82	2	79	0	0	6	2	0	462	105	1	103			3	相	
	541	247	3	± 41	1	5	15	1	3	581	281	3	266	3	4	21	0	
	556	341	7	321	5	3	35	1	8	560	363	9	343	5	10	34	3	
9.	673	444	22	404	9	21	77	5	12	662	471	22	436	14	30	87	1	17
10.	804	570	66	503	47	42	117	8	30	848	643	61	543	30	60	180	6	31
11.	849	${ }^{630}$	92	5.56	59	63	150	11	44	853	ó62	104	555	59	85	204	19	46
12．．．	6.59	517	116	433	70	89	127	12	$6 C$	702	596	170	525	97	103	164	30	49
13.	503	498	175）	451	115	108	115	20	65	588	566	201	445	119	127	155	28	58
14.	400	347 ｜	166	314	107	90	99	21	49	367	325	162	293	91	84	130	27	38
15.	273	247.	148	219	6	65	122	43	37	283	201	171	223	84	79	129	43	25
16.	130	118	761	102	42	33	63	26	14	195	183	130	160	60	58	117	51	16
17－．．－	71	67	50	5	23	21	43	28	7	12.3	121	96	105	33	51	95	45	10
18．．．	36	36	31.	30	15	15	29	16	3	$8{ }_{t}$	83	69	70	28	35	63	32	4
19．．．－	19	19	16	16	10	7	14	9	3	65	64	54	55	17	26	51	33	8

PER CENT

	100． C ．	18.2							100.0	22.							，
	100．6．	45.7	44.5	0.2	0.9	2.8	． 2	0.6	100.0	48.4	． 5	45.8		0.7	3.6		
	100． 1	61.31 .3	57.7	，	5	6.3		1.4	100.0	64.8	1． 6	62.1		1.		0.	
	100．	66.03 .3	60.0	1.3	3． 1	11.4	． 7	1.8	100.0	71.1	3． 3	65.9	2.1	4.5	13.		
	100． C	70.988	62.6	5.8	5.2	14.5	1.0	3.7	100.0	75.8	7.2	64.0	3． 5	7.1	21.		，
	100.	74． 21108	65． 5	6． 9	7.4	17.7	1.3	5． 2	100.	77.6	12.2	65． 1	，	10.0	23.	2	6.4
12	10.00	78．517．6	68． 7	10．6	13.5	19.3	1.8	9.1	100.0	84．9	24．2	74.8	13.	14.	23.	4.	7.0
	100．C	83． 7 ＇29． 4	75.8	19.3	18.1	19.3	3． 4	10.9	100.0	86．1	34.2	75． 7	20.2	21.	26.		9.9
	100． 0	86． 741.5	78.5	26.7	22.5	24．7	5.3	12.3	100.	88	44.1	79.8	24.	22		7.	10.3
	160.0	90． 5.53 .5	80.	24.5	23.8	44． 7	15.7	13.5	100.0	92.	60.4	78.8	29.7	27.8	45.6	15.	8.8
	100.0	89． 2158		32.3	25.4		5．	10.8	100.0	93.8	66.7	82.1	30.8	29.7	60.0	28.	
	1000	94．4i70． 4	80	32.4	29.6	60.6	33.4	9.9	100.0	98．	75． 0	82.	25.8	39.8		35．	． 8
18	100.0	100．0：86． 1	83.3	41.7	41.7	80.5	44.4	83	100.0	98.8	82.1	83.3	30.9	41.7	75．0	38.1	8
		100．084．2			36.8	73．7	47.4	15.8	100.0	88.5	83.1	84.6	26.1	40.0		50.8	4.6

PERMANENT TEETH

In contrast to the graphs for temporary teeth，in which more boys than girls had caries，a higher percentage of girls than boys have one or more permanent teeth decayed，missing，or filled in each age group excepting the last three．（Table 3，fig．4．）As suggested in the pre－ ceding section，it may be that girls lose their temporary teeth some－ what earlier than boys，and consequently their permanent teeth erupt sooner and are exposed to caries over a longer period．The difference is more marked after eight years．About the same percentage of boys and girls between 6 and 10 years of age had five or more perma－ nent teeth decayed，missing，or filled．Among the older children， excepting those of the last two age groups，the percentage of girls was higher than the percentage of boys at each age．The percentage of girls having one or more permanent teeth decayed and unfilled tends to be higher than the percentage of boys．Practically the same percentages of boys and girls had five or more unfilled carious perma－
nent teeth at each age except after 16, when the percentage of boys is higher.

PERMANEMT TEETH

Figure 4.-Prevalence of total past decay and untreated caries in permanent teeth of boys and girls at successive years of age

Table 4.-Condition of permanent teeth of boys and girls in s-year-age groups from 6 to 17 years

Age and sex	Total number of children	Per cent having decayed, missing, or filled					Per cent having flled					Per cent having missing		
		$\left\lvert\, \begin{gathered} 1 \text { or } \\ \text { more } \end{gathered}\right.$	$\begin{aligned} & 3 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 7 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 9 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 3 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 7 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 9 \text { or } \\ & \text { more } \end{aligned}$	1 or more	$\begin{array}{\|c\|} \hline 3 \text { or } \\ \text { more } \end{array}$	$\begin{array}{\|c\|} \hline 5 \text { or } \\ \text { more } \end{array}$
BOFs														
6 to 8.......-	1,548	43.3	17.4	0.8	0.1	0.1	3.6	0.7	0.3	0.1		0.5	0.1	
9 to 11	2, 326	70.7	43.0	7.7	1.9	. 6	14.8	5.8	1.0	. 3	0.1	5.4	. 3	
12 to 14-...--	1,654	82.3	58.7	27.6	12.4	5.3	20.6	9.2	3.2	1.0	. 7	17.4	1.6	0.2
15 to 17.....-	474	90.7	76.8	57.4	38.4	23.2	48.1	30.6	19.2	11.6	5. 7	25.1	3.6	. 6
OIRLS														
$6 \text { to } 8$	1,603	46.7	21.4	. 8	. 2	. 1	3.6	1.3	.2	. 1		9		
9 to 11	2,363	75.2	46.8	7.9	2.5	. 8	19.9	7.6	1.1	. 3	. 1	7.4	4	
12 to 14	1,657	86.1	62.0	32.2	15.8	6.6	27.1	13.7	5.1	2.2	. 8	18.9	2.3	2
15 to 17...---	606	93.2	83.0	65.5	45.4	26.1	56.3	38.1	22.9	11.9	5.9	31.0	6.6	. 8

About the same proportion of boys and girls have one or more permanent teeth nearly destroyed by caries (remaining roots) up to the 12-year group. (Fig. 5.) Among all the older children the percentage of boys is considerably higher than the percentage of girls. At nearly every age a larger percentage of girls than boys have one or more permanent teeth filled. The proportions are practically the same for the two sexes among children from 6 to 8 years of age. The
percentages of girls having five or more permanent teeth filled are somewhat higher than the corresponding percentages of boys among children between 11 and 17 years of age. More girls than boys have PERMANENT TEETH

Tiguri 5.-Prevalence of markedly decayed, missing, and filled permanent teeth among boys and girls at successive years of age

Figure 6.-Extent of total past decay, fillings, and extractions of permanent teeth of boys and girls in 3-year age groups
lost at least one permanent tooth except among the 6 and 7 year old children.

In Figure 6 and Table 4 the condition of the permanent teeth of the boys and girls in 3-year-age groups is shown.

Among the 6 to 8 year old children a slightly higher percentage of girls than boys had permanent teeth decayed, missing, or filled. Few children in this or in the 9 to 11 year group had five or more permanent teeth affected, but the percentages are practically the same among boys and girls in the two oldest groups, a larger proportion of girls than of boys was affected. Among the 6 to 8 year old children few had fillings in permanent teeth, and the percentages of boys and girls are practically the same. Among the older children the percentage of girls is, on the whole, appreciably higher than that of the boys.

Figure 7.-Prevalence of total past decay, untreated caries, and fistulae in teeth of boys and girls at successive years of age

More girls than boys had had permanent teeth extracted. The difference is most pronounced among the 15 to 17 year old children.

ALL TEETH

The graphs based on all teeth are similar to the graphs for temporary teeth in the early age groups and to those for permanent teeth among the older children. (Fig. 8, Table 5.) There is no striking difference between the percentages of boys and girls having one or more teeth decayed, missing, or filled. When children with five or more teeth decayed, missing, or filled are considered, the percentages are higher among boys in the early-age groups and among girls in the later age groups.
$91026^{\circ}-32-3$

ALL TEETH

Figure 8.-Prevalence of marked caries and finings in teeth of boys and girls at successive years of age

Table 5.-Condition of teeth of boys and girls of each age from 6 to 19 years

Age	Total children	Boys								
		Decayed, missing, or filled		Decayed		$\underset{\text { roots }}{\substack{\text { Remaining }}}$		Filled		Fistulæ,
		$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{gathered} 5 \text { or } \\ \text { more } \end{gathered}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$

NUMBER

6.	451	306	274	389	287	148	20	20	4	47
7.	541	498	300	494	848	199	16	40	7	82
8.	556	523	392	514	370	225	17	59	11	4
9.	673	621	417	630	381	253	21	109	17	28
10	804	747	407	717	352	255	9	137	16	21
11.	849	764	317	713	264	208	8	160	16	15
12.	650	570	214	523	152	131	6	130	14	
13.	595	525	209	480	143	97	1	116	20	
14.	400	353	178	321	115	63	3	100	20	
15.	273	246	148	221	71	40	3	121	43	
16.	130	118	76	102	42	14	0	61	20	
17	71	67	50	57	23	7	0	43	28	
18	36	36	31	30	15	3	0	29	16	0
	19	19	16	16	10	3	0	14	9	0

PER CENT

6.-.-...............--	100.0	87.8	60.7	80.3	59.2	328	44	4.4	0.9	10.1
7.	100.0	92.1	68.8	91.3	64.3	36.8	2.9	7.4	13	8.9
8	100.0	94.1	70.5	92.4	68.5	40.5	8.1	10.6	20	7.9
9.	100.0	92.3	62.0	93.6	56.6	37.6	3.1	16.2	25	3.7
10	100.0	92.	50.6	80.2	43.8	31.7	1.1	17.0	20	26
11.	100.0	90.0	37.3	84.0	31.1	21.5	. 9	18.8	1.9	18
12	100.0	86.5	82.5	79.4	23.1	10.9	. 9	19.7	2.1	12
13.	100.0	88.2	35.1	80.7	24.0	16.8	.2	19.5	3.4	. 5
14	100.0	88.3	44.5	80.3	28.7	15.7	. 7	25.0	6.0	. 7
15.	100.0	90.1	54.2	80.9	28.0	14.7	1.1	44.3	16.7	1.8
16	100.0	90.8	58.5	78.5	32.3	10.8		40.0	15.4	. 8
17.	100.0	94.4	70.4	80.3	324	9.9		60.6	39.4	1.4
18.	100.0	100.0	86.1	83.3	41.7	8.3		80.5	44.4	
	100.0	100.0	84.2	84.2	52.6	15.8		73.7	47.4	

Table 5.-Condition of teeth of boys and girls of each age from 6 to 19 years-Con.

Age	Total children	Girls								
		Decayed. missing, or flled		Decayed		$\begin{gathered} \text { Remaining } \\ \text { roots } \end{gathered}$		Filled		Fistulen,
		$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & \mathbf{5} \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{gathered} 5 \text { or } \\ \text { more } \end{gathered}$	$\begin{gathered} 1 \text { or } \\ \text { more } \end{gathered}$
NUMBER										
6.	462	405	283	400	279	160	9	24	2	47
	581	537	370	528	363	211	14	43	4	40
8.	560	529	377	520	361	207	11	58	9	41
	662	617	382	602	333	178	12	115	17	23
10	848	768	359	718	277	193	6	209	19	20
11.	853	733	276	652	190	157	3	209	22	12
12.	702	620	228	556	147	108	2	169	30	5
13.	588	519	218	458	132	78	0	156	28	2
14.	367	327	163	294	92	40	0	130	27	3
15	283	261	172	223	84	28	1	128	43	8
16	195	183	130	160	60	15	0	118	52	0
17.	128	121	97	105	34	9	0	96	45	0
18.	84	83	69	70	28	5	0	63	32	1
19...	65	64	54	55	17	3	0	50	32	1
PER CENT										
6.	100.0	87.7	61.3	86.6	60.4	34.6	1.9	b. 2	0.4	10.2
7	100.0	92.4	63.7	90.9	62.5	36.3	2.4	7.4	. 7	6.9
8.	100.0	94.5	67.3	92.9	64.5	37.0	2.0	10.0	1.6	7.3
9	100.0	93.2	57.7	90.9	50.3	26.9	1.8	17.4	2.6	3.5
10	100.0	90.6	42.3	84.7	32.7	22.7	. 7	24.6	2.2	23
11.	100.0	85.9	32.4	76.4	223	18.4	.3	24.5	2.6	1.4
12.	100.0	88.3	32.5	79.2	20.9	15.4	. 3	24.1	4.3	. 7
13.	100.0	88.3	37.1	77.9	22.4	13.3		28.5	4.8	. 3
14.	100.0	89.1	44.4	80.1	25.1	10.9		35.4	7.3	. 8
15	100.0	922	60.8	78.8	29.7	9.2	. 3	45. 2	15. 2	1.1
16.	100.0	93.8	66.7	82.1	30.8	7.7		60.5	28.7	
17.	100.0	94.5	75.8	820	26.8	7.0		75.0	35.1	
18.	100.0	98.8	82.1	83.3	30.9	5.9		75.0	38.1	1.2
19...--	100.0	98.5	83.1	84.6	26.1	4.6		76.9	49.2	1.5

In most groups under 12 years of age higher percentages of boys than of girls had unfilled carious teeth. Among children 12 years of age and over, practically the same proportion of boys and girls were so affected. In nearly every age group a higher percentage of boys than girls had five or more unfilled carious teeth.

Practically the same proportions of boys and girls in each age group had teeth with fistulæ.

The proportions of boys and girls in 3-year-age groups having teeth decayed, missing, or filled are shown in Figure 9 and Table 6.

Table 6.-Condition of teeth of boys and of girls in 8 -year-age groups from 6 to 17 years

Ase and ser	Total number of children	Per cent having decayed, missing, or filled					Per cent having flled				
		$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 8 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	7 or more	$\begin{aligned} & 9 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 1 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 3 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 5 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 7 \text { or } \\ & \text { more } \end{aligned}$	$\begin{aligned} & 9 \text { or } \\ & \text { more } \end{aligned}$
BOY8	$\begin{array}{r} 1,548 \\ 2,326 \\ 1,654 \\ 474 \end{array}$	$\begin{aligned} & 91.5 \\ & 91.7 \\ & 87.5 \\ & 90.9 \end{aligned}$	$\begin{aligned} & 80.8 \\ & 73.5 \\ & 64.6 \end{aligned}$								
6 to 8.-				$\begin{aligned} & 66.3 \\ & 49.1 \\ & 36.3 \end{aligned}$	48.828.8	30.814.2	7.717.5	3.57.4	1.4	0.6	0.1.3
9 to 11.											
12 to 14.					15.7	7.1	20.9	9.3	3.3	1.1	. 7
15 to 17.			77.0	57.8	38.4	23.4	47.5	30.4	. 19.2	11.6	E. 7
CIRLS											
6 to 8...-	$\begin{array}{r} 1,603 \\ 2,363 \\ 1,657 \\ 608 \end{array}$	91.889.6	79.3	64.343.0	48.821.9	30.19.9	7.722.6	3.39.2	2.9 ${ }^{.9}$. 4	.2.2.8
9 to 11.											
12 to 14-		88.583.2	66.483.0	36.865.8	$\begin{array}{r} 18.1 \\ 45.9 \end{array}$	7.528.2	27.556.4	13.813.838.3	2.123.1	2.2	
15 to 17.										11.9	4.8

Frocer 9.-Extent of tetal past decay and filings in teeth of boye and girls in 8-year age groupe
From 6 to 8 years the incidence of past and present decay is practically the same for both sexes. However, among 9 to 11 year old children a larger percentage of boys than of girls have teeth that are or have been carious. The ratio of boys to girls becomes somewhat greater when children having larger numbers of affected teeth are considered. In the group from 12 to 14 years the percentages are again very nearly alike for both sexes. From 15 to 17 years the proportion of girls affected is higher.

A marked contrast is evident in the graphs showing the percentages of boys and girls having fillings. Between 6 and 8 years of age the percentages are much the same for both sexes. Among the older children, however, a considerably greater proportion of girls than of
boys have one or more filled teeth. The ratio gradually lessens as children having larger numbers of filled teeth are considered. In the last group practically the same percentages of boys and girls had seven or more and nine or more teeth which had been filled.

SUMMARY

TEMPORARY TEETH
At each age except among the very youngest children more boys than girls have carious or filled temporary teeth. (Fig. 1.)

A considerably higher percentage of boys than of girls in most age groups had markedly decayed temporary teeth. (Fig. 2.)

There was no sex difference in the prevalence of temporary teeth with fistulæ. (Fig. 2.)

PERMANENT TEETH

On the whole, more girls than boys had permanent teeth decayed, missing, or filled. (Fig. 4.)

The prevalence of unfilled carious permanent teeth was practically the same among boys and girls. (Fig. 4.)

A higher proportion of girls than of boys had had permanent teeth extracted. (Fig. 5.)

Among children 12 years of age and older, more boys than girls had markedly decayed permanent teeth. (Fig. 5.)

In most age groups, a considerably higher percentage of girls than of boys had had one or more permanent teeth filled. (Fig. 5.)

About the same percentage of boys and girls had five or more filled permanent teeth. (Fig. 5.)

ALL TEETH

A greater proportion of boys among the younger children and of girls among the older children had decayed, missing, or filled teeth. (Fig. 7.)

Among the younger children, more boys than girls had unfilled carious teeth. Among older children, there was little difference between the sexes, except that a considerably higher number of boys than girls in the last three age groups had five or more unfilled carious teeth. (Fig. 7.)

The prevalence of teeth with fistule was practically the same among boys and girls. (Fig. 7.)

A very much higher percentage of boys than of girls had markedly decayed teeth. (Fig. 8.)

On the whole, more girls than boys had teeth with fillings. (Fig. 8.)

A TRACHOMA SURVEY IN THE RIO GRANDE VALLEY OF TEXAS

By C. E. Ricm, Passed Assistant Surgeon, United States Public Health Service

Because of the repeated reports of trachoma in considerable amount in the citrus region of the Rio Grande Valley in Texas, the assistance of the United States Public Health Service was requested by the Texas State Department of Health in making a survey to determine the actual prevalence of trachoma in this region. The survey was begun on March 5, 1931, by representatives of the Public Health Service and State department of health jointly.

SCOPE OF GURVET

During a period of six weeks there were examined 11,054 school children in attendance at 76 schools in Cameron, Willacy, Hidalgo, and Starr Counties in southeastern Texas. In addition, visits were made to 25 homes of Mexicans living in and around Brownsville. The homes selected for visits were those from which children in school showed marked granular involvement of the conjunctiva of the eyelids. This part of the survey was difficult, owing to fears aroused because of inability to understand what was desired and also because some of the homes visited were entirely deserted at the time on account of the absence of the families en masse at work in the fields.

PLAN OF STUDY

The preliminary work of finding the suspicious cases was done by a nurse specially trained in trachoma work, assisted by public health nurses, during the period March 5 to April 14, 1931. Diagnostic clinics, during the period April 16-22, 1931, were held at certain points by medical experts for the examination of each suspected case thus uncovered.

RESULTS

In all, 44 cases of trachoma were uncovered, and in 40 of these the disease had apparently been contracted in or in the vicinity of the Rio Grande Valley. Eight of the 40 were arrested cases without sufficient corneal involvement to cause any loss of vision and had never been treated. A Mexican janitor in one large city school had the most active case seen in adults. This particular case showed the characteristic purplish coloration in the upper cul-de-sac, with some papillary overgrowth and marked invasion of the corneas by pannus.

Suspected cases found by the nurses were examined at 11 diagnostic clinics held in Cameron and Hidalgo Counties. In those clinics 119 adults and 1,747 children between the ages of 1 and 20 were examined with the results shown in Table 1.

Table 1.-Results of examination of suspected cases at 11 diagnostic clinics

Condition	Adults	Children	Condition	Adults	Children
Trachoma.	7368	3772625	Conjunctivitis Negative.		141872
Suspected trachoma				100	
Cataract........			Total	119	1,747

Because of the predominance of folliculosis, these cases were studied from the standpoint of age distribution and location.

Age distribution

	$\mathrm{Up}_{5} \text { to }$	5 to 9	9 to 14	14 to 20	Adults
Age distribution of total number examined Age distribution of cases of folliculosis......	43 12	619 439	919 168	113	${ }_{8}^{119}$

${ }^{1}$ Ages not given in 53 cases.
It is very evident that folliculosis was largely confined to children in the primary grades and was almost negative in the higher grades.

The following figures show the high percentage of folliculosis found in the individual schools:
201

Folliculosis 122
Percentage of folliculosis 67
2. Santa Maria School (largely attended by Mexican children):
Total examined 164
Folliculosis 90
Percentage of folliculosis 54.9
3. Rio Hondo School (largely attended by American children):
Total examined 418
Folliculosis 109
Percentage of folliculosis 26.1

There was observed a high percentage of folliculosis among the children examined in the other schools.

THERAPEUTIC DIAGNOSIS

The children attending the Santa Maria school in Cameron County, presenting evidence of follicular involvement of the eyelids, were placed under treatment in which a 2 per cent solution of mercurochrome or a one-fourth per cent solution of zinc sulphate was used. This treatment was administered by the teachers and older students. A reexamination of 48 pupils of this school treated in the above manner for folliculosis over a period of five weeks showed that 33, or 69 per cent, had become clinically negative. Considering the very irregular attendance of many Mexican children, because they are required by their parents to work in the fields, these results may be considered most excellent.

As these children had the same type of conjunctival involvement that is found to be so prevalent in the Rio Grande Valley, the prompt clearing up of the condition under mild astringents and antiseptics is evidence in favor of the nontrachomatous nature of their lid pathology.

METHOD OF EXAMINATION

All those presenting themselves at the diagnostic clinics had the eyelids of both eyes well everted so as to expose a generous portion of the upper and lower cul-de-sac. The observation of the conjunctiva thus exposed was made in natural light. In 90 per cent of all individuals the hand slit-lamp was used for examining the cornea for opacities and for pannus. The early commencement of pannus can not be seen without some magnification and focal light.

PATHOLOGY

Pannus was noted in all of the few cases of trachoma examined. In the arrested cases, scar tissue was quite evident in the cul-de-sac, more in the upper than the lower, and the pannus was ghostlike or markedly attenuated. The papillary type was more predominant.

In the many cases of folliculosis the granules were usually large and numerous, and on everting the upper lid these granules would often roll out to the extent of obscuring the cornea. On close observation, blood vessels could be made out at the base of the granules. The lids were quite pliable. In the lower lids the granules were also numerous; but on stretching the conjunctiva to separate the granules, blood vessels could usually be made out. On observing the corneas in these cases with the slit lamp there was not the least suspicion of blood vessel penetration of corneal tissue, and the corneas were always smooth and clear.

In the total examined there were only two cases of corneal opacity, both caused by trachoma and both in adults-one from Minnesota and the other from central east Texas. Only one case of lid distortion, due to trachoma, was observed-in an adult from the vicinity of the Oklahoma border.

CONCLUSIONS

1. Trachoma at the present time is but a limited public health problem in the citrus belt of the Rio Grande Valley, both among Americans and Mexicans. It is believed that the high living standards among the American population of this region precludes the possibility of trachoma ever becoming much of a problem in this region.
2. The instillation of zinc sulphate or mercurochrome solution in the conjunctival sac of children showing follicular involvement apparently clears up most of such conditions in this region. However, to be most effective this treatment should be supplemented by
instruction in personal hygiene, including cleanliness and the use of individual towels. It is not believed necessary to keep from school the children receiving the above treatment.
3. It is recommended that cases that show but little improvement after two months of treatment should be grattaged, including both upper and lower lids, preferably under local anesthesia. This should be followed for some time with 2 per cent silver nitrate solution applied to the everted lids and then irrigated off.
4. The general population and the physicians of this region are greatly interested in school health supervision, and their full cooperation in any campaign for the improvement of health and sanitation in schools may be taken for granted.

COURT DECISION RELATING TO PUBLIC HEALTH

City held not liable to cemetery ouners for damages resulting from ordinance forbidding burials within city.-(California District Court of Appeal, Second District; Hand et al. v. City of Whittier, 4 P. (2d) 273; decided Oct. 22, 1931.) The people of the city of Whittier, by direct vote, adopted an ordinance declaring that the burial of the dead within the city was dangerous to life and detrimental to the public health and forbidding the interment of dead bodies in any cemetery within the corporate limits. The plaintiffs, who were the owners of a small cemetery located in a thinly populated portion of the city, brought an action against the city for damages caused by "said ordinance and the unreasonable, arbitrary caprice and unrestrained will of the municipality and the refusal of the officers thereof to issue permits for burials." The judgment of the trial court was in favor of the city, and, in affirming this judgment, the appellate court said:

It is undisputed by appellants that the passage of the ordinance in question was an aet by the city of Whittier in the exercise of a governmental function. In such circumstances, in the absence of any statute to the contrary, the principle of law is well established that an action for damages against the city will not lie. (18 Cal. Jur. 1091, 19 R. C. L. 1083.)

DEATHS DURING WEEK ENDED DECEMBER 12, 1931

Summary of information received by telegraph from industrial insurance companies
for the week ended December 12, 1931, and corresponding week of
the Weekly Health Index, issued by the Bureau of the Census,
(Fommerce)
Comartment of

Deaths ${ }^{1}$ from all causes in certain large cities of the United States during the week ended December 12, 1931; infant mortality, annual death rate, and comparison with corresponding week of 1930. (From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce)
[The rates published in this summary are based upon mid-year population estimates derived from the 1930 census]

[^5]Deaths ${ }^{1}$ from all causes in certain large cities of the United States during the week ended December 12, 1931; infant mortality, annual death rate, and comparison with corresponding week of 1930. (From the Weekly Health Index, issued by the Bureau of the Census, Department of Commerce)-Continued

City	Week ended Dec. 12, 1931				$\begin{gathered} \text { Corresponding } \\ \text { week } \end{gathered}$		Death rate ${ }^{2}$ for the first 50 weeks	
	Total deaths	Death rate ${ }^{2}$	Deaths under 1 year	Infant mortality rate rate ${ }^{2}$	Death rate ${ }^{2}$	Deaths under 1 year	1931	1930
Milwaukee.	88	7.7	8	36	9.6	11	9.1	9.6
Minneapolis	96	10.6	6	39	13.4	14	10.9	10.7
Nashville --	56	18.8	11	166	14.2	3	16.7	16.5
White ${ }^{6}$	35	16.2	5	99	12.2	3	14.4	13.9
Colored	21	25.6	6	377	19.4	0	23.0	23.1
New Bedford?	24	11.1	1	26	8.8	2	120	11.0
New Haven--	39	12.5	1	15	9.3	3	12.5	12.5
New Orleans ${ }^{\text {- }}$	136	15. 2	13	73	17.2	18	16.5	17.3
White	78	12.2	5	42	13.8	11	13.5	14.3
Colored	58	22.5	8	132	25.7	7	24.1	24.9
New York	1,392	10.2	88	38	10.6	119	11.0	10.7
Bronx Borough..	215	8.4	14	40	7.3	12	8.1	7.8
Brooktyn Borough	480	9.7	31	33	9.5	33	10.1	9.8
Manhattan Boroug	514	14.8	34	45	16.3	54	16.5	15.9
Queens Borough..	140	6.3	7	28	7.4	16	7.1	7.0
Richmond Borough	33	10.5	2	38	12.1	4	13.4	13.8
Newark, N. J.	${ }_{69} 9$	11.1	5	27 113	11.7	4	11.4	12.0
Oklahoma City	38	10.1	7	98	19.0	1	10.6	10.9
Omaha...	50	12.0	5	58	16.5	7	13.8	13.5
Paterson.	36	13.5	4	68	8.3	2	13.2	12.0
Peoria.	23	11.1	1	28	13.8	5	12.4	12.3
Philadelphia	434	11.5	39	57	12.3	48	12.8	12.6
Pittsburgh	170	13.1	16	56	15.0	19	14.3	13.8
Portland, Oreg.	83	14.1	3	37	11.4	3	11.6	12.1
Providence	81	16.6	7	64	10.7	5	12.6	12.8
Richmond ${ }^{6}$	53	15.0	5	73	15.7	3	15. 3	14.9
White	33	13. 1	2	44	10.8	3	12.9	12.2
Colored	20	19.7	3	130	27.5		21.4	21.4
Rochester.	69	10.8	4	37	8.7	4	11.7	11.5
St. Louis	187	11.8	11	40	13.4	7	14.8	14.0
St. Paul.	46	8.7	2	21	10.7	2	10.4	10.1
Salt Lake City ${ }^{\text {d }}$	31	11.3	1	15	14.8	4	12.0	12.6
Ean Antonio.	55	11.9	8		15. 2	5	14.1	15.8
San Diego..-	43	14.3	3	62	15.7	1	13.6	14.5
San Francisco.	173	13.9	8	63	13.9	9	12.9	13.0
8 chenectady.	23	12.5	0	0	10. 3	2	10.9	11.1
Seattle....	83	11.6	3	30	12.4	8	11.3	10.9
Somerville.	24	11.9	2	62	10.5	3	8.8	9.6
South Bend	13	6.3	1	28	9.9	3	8.0	9. 0
Spokane--	34	15.2	1	28	9.9	0	12.4	12.4
Springfield, Mass	32	10.9	1	17	11.1		11.4	12.0
Syracuse.	42 25	10.3	4	49	10.4		11.5	11.6
Tacoma	${ }_{72}^{25}$	12.1	2	56 38	18.5	8	123 11.8	12.5
Trenedo-..-	72	12.6	4	38 37	13.6 17.3	8 5	11.8 16.2	126 16.6
Trenton.	37 29	114.8	2 3	37 84	17.3 8.7	5	16.2 14.2	16.6 14.5
Washington, D. C.-	140	14.9	14	78	14.2	9	15.9	15.2
White.	82	12.0	3	25	11.2	6	13.5	13.0
Colored	58	22.4	11	188	22.3	3	22.1	20.9
Waterbury-	13	6.7	0	0	9.9	2	9.5	9.5
Wilmington, Del.	39	19.1	5	113	14.7	4	13.8	14.4
Worcestar-	40	10.6	2	29	13.6	3	12.0	127
Yonkers	24	9.0	2	48	8.9	3	8.3	88.1
Youngstown.	16	4.8	4	55	11.0	3	9.8	10.4

[^6]
PREVALENCE OF DISEASE

No health department, State or local, can effectively prevent or control disease without knowledge of when, where, and under what conditions cases are occurring

UNITED STATES

CURRENT WEEKLY STATE REPORTS

These reports are preliminary and the figures are subject to change when later returns are received by the State health officers

Reports for Weeks Ended December 19, 1931, and December 20, 1930
Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended December 19, 1931, and December 20, 1930

[^7]Cases of certain communicable diseases roported by telograph by State health officers for weeks ended December 19, 1931, and December 80, 1990-Continued

[^8]Cases of certain communicable diseases reported by telegraph by State health officers for weeks ended December 19, 1931, and December 20, 1930-Continued

Division and State	Poliomyolitis		Scarlet fever		Smallpox		Typhoid fever	
	Week ended Dec. 19, 193	Week ended Dec. 20, 1930	Week ended Dec. 19, 1931	Week ended Dec. 20, 193	Weok ended Dec. 19, 193	Weak ended Dec. 20, 1930	Week onded Dec. 19, 1831	Week ended Dec. 20, 1930
Mountain States:	1	0	$\begin{array}{r}36 \\ 6 \\ 10 \\ 21 \\ 8 \\ 8 \\ 9 \\ 18 \\ \hline\end{array}$					
Montana..				25		28	30	
Wyoming				21	0	1		0
Colorado.				10	0	0	3	0
New Mexico.				5	0	1	2	1
Arizona...				9	0	2	0	2
Utah ${ }^{2}$				8	0	0	1	1
Pacific States:							006	
Washington..	1	0	50	51	10	18		3
Oregon-......	0	0	19	84	11	54		${ }_{10}$

2 Week ended Friday.
${ }^{2}$ Typhus fever, 1931, 5 cases; 2 cases in South Carolina, 1 case in Georgia, 1 case in Alabama, and 1 case in California.

SUMMARY OF MONTHLY REPORTS FROM STATES

The following summary of cases reportod monthly by States is published weekly and covers only those 8tates from which reports are received during the current week:

Diarrhea and enteritis（u	Cases	Rabies in antmals：	Cases
Ohio．．．．．．．．．．．．．e．	29	Maryland．	2
Dysentery：		South Carolina．	9
Marsland．	22	Scabies：	
Ohio．．	1	Maryland．	20
Pennsylvania	3	Septic sore throat：	
Porto Rico．	105	Idaho．	6
Filariasis：		Maryland	11
Porto Rico．	31	Now Mexico．	1
Food poisoning：		Ohio	81
Ohio．	8	Tetanus：	
German meas＇es：		Maryland．	8
Maryland．	14	New Jersey．	－ 1
New Jersey	23	New Mexico．	1
New Mexico	1	Ohio．	－ 1
Ohio．	12	Pennsylvania	2
Pennsylvania．	52	Porto Rico．	6
Hookworm disease：		Tetanus，infantile：	
Pennsylvanis．	1	Porto Rico	18
South Carolina	74	Trachoma：	
Impetigo contagiosa：		Indiana	－ 1
Maryland．．	61	Maryiand	－ 1
North Dakota．	3	New Jersey．	2
Lead poisoning：		New Mexico．	－ 1
New Jersey．	1	North Dakota	1
Ohio．	14	Ohio	－ 6
Lethargic encephalitis：		Pennsylvania	－ 6
Alabama．	1	Porto Rico．	15
Maryland．	1	Trichinosis：	
New Jersey．	1	New Jersey－	2
Ohio．．．．．．－	7	Tularaemia：	
Pennsylvania．	3	Indians	－ 1
South Carolina	2	Marsland	－ 2
Mumps：		Ohio	4
Alabama．	22	West Virginia	－ 8
Idaho．	72	Typhus fever：	
Indiana．	63	Alabama．	13
Maryland．	123	South Carolina	1
New Jersey．	87	Undulant fever：	
New Mexico	17	Indiana	4
North Dakota．	33	Maryland．	－ 4
Ohio．	547	New Jersey．	10
Pennsylvania	1，108	New Mexico．	1
Porto Rico．	8	Ohio．	3
South Carolina	58	Pennsylvania	2
Ophthalmia neonatorum：		Vincent＇s angina：	
Maryland．	3	Maryland．－	12
New Jersey．	4	North Dakota．	40
Ohio．	50	Whooping cough：	
Pennsylvania	14	Alabama．	61
Porto Rico．	8	Indiana．	187
South Carolina	11	Maryland．．	590
Paratyphoid fever：		New Jersey．．	61
Ohio．	1	North Dakota	22
Porto Rico．	4	Ohio－．．．．．．	1，321
South Carolina	5	Pennsylvania	1，743
Puerperal septicemia：		Porto Rico－	192
Ohio．	3	West Virginia．	213
Pennsylvania．	21	Yaws：	
Porto Rico．．．．．．．．	8	Porto Rico．．．．	70

ysentery：

Marリland．．．
Phio 1
Pennsyivania

Porto Rico．．． 31
ood poleoning：
Ohio．．
German meas＇es：
Maryland．． 14
New Jersey ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－． 23
New Mexico ．． 1
Ohio ．． 12
Pennsylvania．． 52
Pem
South Carolina．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 74
petigo contagiosa：
Maryland．．
Lead poisoning：
New Jersey．． 1
Ohio ．．．．．．－．－．－．．．．．－．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14
itis：
Nabama．
New Jersey
Pennsylcania．． 3
South Carolina－．．．．．．．．．．．．．．．．．．．．．－．－．－－－－－－ 2
Alabama
Idaho ．．． 72
相
Maryland．． 87
New Me
North Dakota－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 33
Ohio ．．． 647
Pennsylvanis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－1， 10
Porto Rico．．． 8
South Carolina..-- ．．．．．．．．．．．．．．．．．．．．．．．．．．．－－ 58

New Jersey ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 4
Ohio－．． 50
Pennsylvania．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 14
Porto Rico ．．－ 8
South Carolina．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．－ 11
Paratyphoid fever：
Ohio ．． 1
Porto Rico ．． 4

Puerperal septicemia：

Pennsylvania．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 21
Porto Rico．．． 8
Rabies in antmals： CasesSouth Carolina0
Maryland 20
Idaho 6New Mexico1
Ohio 81
Maryland 8New Mexio1Pennsylvania2
Porto Rico 6
Porto Rico 18
ndiana 1
New Jersey 2
North Dakota 16
Porto Rico 15
New Jersey 2
Indians 1Ohio4
West Virginia 8
Alabama 13
解4
Maryland 4
New Mexico 12
Mond
12
12
North Dakota 40
Alabama 61Maryland590
New Jersey2
North Dakota1， 321
Pennsylvania 723
Porto
72
West Virginia 213
aws：Porto Rico70

RECIPROCAL NOTIFICATIONS

Notifications regarding communicable diseases sent during the month of November, 1981 by departments of health of States named to other State health departments

Disease	$\begin{gathered} \text { Califor- } \\ \text { nia } \end{gathered}$	Connecticut	Illinois	Massachusetts	$\underset{\text { sota }}{\text { Minno- }}$	New York
Diphtheria						1
Leprosy -.....-----7-	1					
Mathargic encephalitis.		1		1		
Meningococcus meningitis						1
Poliomyelitis...........-.					3	
Scarlet fever....		1				
Syphilis.......					1	
Tuberculosis.	5		4		30	
Typhoid fever-	1			1	2	1
Undulent fever		1				

ADMISSIONS TO HOSPITALS FOR THE INSANE, SEPTEMBER, 1929

Reports for the month of September, 1929, showing new admissions to hospitals for the care and treatment of the insane, were received by the Public Health Service from 118 hospitals, located in 41 States, the District of Columbia, and the Territory of Hawaii. The 118 hospitals had 184,242 patients on September 30, 1929, 97,889 males and 86,353 females, the ratio being 113 males per 100 females.

The following table shows the number of new admissions for the month of September, 1929, by psychoses:

Psychoses	Number of first admissions		
	Male	Female	Total
1. Traumatic psychoses.	6	1	7
2. Senile psychoses.	179	132	311
3. Psychoses with cerebral arteriosclerosis.	182	94	276
4. General paralysis.	210	70	280
5. Psychoses with cerebral syphilis.	26	13	39
6. Psychoses with Huntington's chorea	3	4	7
7. Psychoses with brain tumor-	2	0	2
8. Psychoses with other brain or nervous d	23	17	40
9. Alcoholic psychoses.	131	16	147
10. Psychoses due to drugs and other exogen	9	9	18
11. Psychoses with pellagra-..-------.-.	17	29	46
12. Psychoses with other somatic diseases.	28	38	66
13. Manic-depressive psychoses.	174	248	422
14. Involution melancholia.	20	42	62
15. Dementia prøcor (schizophrenia)	350	265	615
16. Paranoia and paranoid conditions.	37	52	89
17. Epileptic psychoses..........	40	36	76
18. Psychoneuroses and neuroses	20	43	63
19. Psychoses with psychopathic personalit	14	8	22
20. Psychoses with mental deficiency.	64	58	122
21. Undiagnosed psychoses.	139	79	218
22. Without psychosis.....	154	60	214
Total.	1,828	1,314	3, 142

During the month of September, 1929, there were 3,142 new admissions to the hospitals, 58.2 per cent of these being males and 41.8 per cent females, the ratio being 139 males per 100 females. Four hundred and thirty-two of the new admissions were reported as undiagnosed or "without psychosis." There were 2,710 new admissions for which provisional diagnoses were made. Cf these 2,710
patients, cases of dementia præcox constituted 22.7 per cent; manicdepressive psychoses, 15.6 per cent; senile psychoses, 11.5 per cent; general paralysis, 10.3 per cent; and psychoses with cerebral arteriosclerosis, 10.2 per cent. These five classes accounted for 70.3 per cent of the new admissions for which diagnoses were given.

The following table shows the number of patients in the hospitals and on parole on September 30, 1929:

	Total patients on books		
	Male	Female	Total
Total patients on books last day of month:			
	87,340 10,549	78,117 8,236	$\begin{array}{r} 165,457 \\ 18,785 \end{array}$
Total.	97, 889	86, 353	184, 242

Of the 184,242 patients, 10,549 males and 8,236 females were on parole or otherwise absent but still on the books at the end of the month- 10.8 per cent of the males, 9.5 per cent of the females, and 10.2 per cent of the total number of patients.

GENERAL CURRENT SUMMARY AND WEEKLY REPORTS FROM CITIES

The 97 cities reporting cases used in the following table are situated in all parts of the country and have an estimated aggregate population of more than $33,400,000$. The estimated population of the 90 cities reporting deaths is more than $31,855,000$. The estimated expectancy is based on the experience of the last nine years, excluding epidemics.

Weeks ended December 12, 1931, and December 13, 1950

City reports for week ended December 18, 1951

The "estimated expectancy" diven for diphtheria, pohiomyolitis, scarlet frver, smallpor, and typhold fever is the result of an attempt to ascortain from previous occurrence the number of cases of the disease under consideration that may be expected to occur during a certain weok in the absence of epidemics. It is based on roports to the Public Health Service during the past nine years. It is in most inetances the median number of cases reported in the corresponding weels of the preceding years. Whan the reports include several epldemics, or when for other reasons the median is unsatisfactory, the epidemic periods are exctuded and the estimated expectancy is the mean number of cases roported for the week during nonepidemic years.
If the reports have not been received for the full nine years, data are used for as many yearsas possibly but no year earlier than 1922 is included. In obtaining the estimated expectancy, the figures are smoothed when necessary to avoid abrupt deviation from the usual trend. For some of the diseases given in the table the available data were not sufficient to make it practicable to compute the estimated expectanoy.

City reports for week ended December 12, 1931—Continued

City reports for week ended December 18, 1981-Continued

City reports for week ended December 12, 1931—Continued

Cüy reports for woek ended December 18, 1951-Continued

[^9]City reports for week ended December 12, 1931—Continued

City reports for week ended December 12, 1951-Continued

${ }^{1}$ Typhus fever, 5 cases and 1 death: 1 case and 1 death at Charleston, S. C.; 1 case at Savannah, Ga;; and 3 cases at Tampa, Fla.

The following table gives the rates per 100,000 population for 98 cities for the 5-week period ended December 12, 1931, compared with those for a like period ended December 13, 1930. The population figures used in computing the rates are estimated midyear populations for 1930 and 1931, respectively, derived from the 1930 census. The 98 cities reporting cases have an estimated aggregate population of more than $33,000,000$. The 91 cities reporting deaths have more than $31,500,000$ estimated population.
Summary of weekly reports from cities, November 8 to December 12, 1931-Annual rates per 100,000 population compared with rates for the corresponding period of $1930{ }^{\text {i }}$

DIPHTHERIA CASE RATES

	W eek ended-									
	Nor. 14, 1831	$\begin{gathered} \text { Nov. } \\ 15, \\ 1030 \end{gathered}$	$\begin{gathered} \text { Nov. } \\ 21, \\ 1931 \end{gathered}$	Nov. 22,	Nor. 28. 1931	$\begin{gathered} \text { Nov. } \\ 29,{ }^{2} \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & \mid \mathbf{5 , 1 9 3 1} \end{aligned}$	$\begin{aligned} & \text { Dec. } \\ & 6,1930 \end{aligned}$	$\begin{gathered} \text { Dec. } \\ 12,1931 \end{gathered}$	$\begin{gathered} \text { Dee. } \\ 13,1930 \end{gathered}$
98 cities.	96	89	96	100	84	87	101	${ }^{2} 90$	93	187
New England.	50	82	70	123	67	87	58	121	70	128
Middle Atlantic.	52	44	53	52	58	48	54	58	59	47
East North Central.	80	128	91	124	71	122	94	112	86	120
West North Central	184	107	174	110	138	110	222	101	168	97
Gouth Atlantic.	146	120	172	154	144	66	164	112	118	122
Esest South Central.	227	185	109	275	145	138	163	143	163	138
West South Central	233	160	206	171	206	153	244	2147	287	${ }^{2} 132$
Mountain...-...-.	61	28	17	26	26	79	52	18	26	20
Pacific.	127	63	98	63	67	95	88	65	61	55

MEASLES CASE RATES

98 cities.	55	91	85	126	90	107	113	${ }^{2} 142$	118	${ }^{2} 162$
New England	238	172	233	179	315	162	481	220	656	273
Middle Atlantic.	38	68	92	76	82	69	111	85	89	85
East North Central	18	17	29	31	15	28	31	28	28	28
West North Central	17	502	19	767	13	649	27	953	46	1,077
South Atlantic.	10	26	34	64	28	44	43	62	22	80
East South Central.	12	18	29	149	35	66	35	155	17	299
West South Central	24	0	10	3	24	10	27	211	17	${ }^{2} 11$
Mountain.	400	308	757	326	1,236	282	757	53	809	150
Pacific	135	32	149	28	123	10	180	26	210	28

SCARLET FEVER CASE RATES

98 cities.	170	187	187	195	155	174	179	${ }^{2} 202$	222	2224
New England	221	276	280	237	262	264	293	288	397	259
Middle Atlantic	131	126	163	159	147	148	155	178	199	186
East North Central	215	287	241	263	169	221	229	257	281	315
West North Central	149	143	132	219	117	139	161	198	143	209
South Atlantic.	239	154	259	216	176	188	172	230	176	260
East South Central	198	275	145	209	122	215	128	299	250	377
West South Central	122	118	78	94	95	132	108	292	142	284
Mountain.	313	388	218	282	191	229	218	141	261	211
Pacific.	96	99	129	87	108	83	100	97	153	71

SMALLPOX CASE RATES

98 cities.	1	4	1	3	2	8	5	27	4	214
New England	0	0	0	0	0	0	55	0	7	0
Middle Atlantic.	0	0	0	0	0	0	1	0	0	0
East North Central	0	2	0	0	0	4	0	1	2	3
West North Central.	4	21	10	23	11	68	4	48	13	122
South Atlantic...-	0	0	0	0	0	0	0	0	0	0
East South Central	6	0	0	0	6	0	0	0	0	0
West South Central.	3	3	0	3	20	3	3	24	17	27
Mountain..-	9	0	0	44	0	35	0	106	0	150
Pacific....	4	18	6	6	6	8	10	10	10	6

[^10]Summary of weekly reports from cities, November 8 to December 12, 1931-Annual rates per 100,000 population compared with rates for the corresponding period of 1930-Continued

TYPHOID FEVER CASE RATES

	Week ended-									
	Nov. 14 14, 1931	Nov. 15, 1930	$\begin{gathered} \text { Nov. } 21, \\ 1931 \end{gathered}$	$\begin{gathered} \text { Nov. } \\ 22, \\ 1930 \end{gathered}$	Nov. 28, 1931	$\begin{gathered} \text { Nov. } \\ 29, \end{gathered}$ 1930	$\begin{gathered} \text { Dec. } \\ \mathbf{5}, 1931 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Dec. } \\ \hline 6,1930 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Dec. } \\ \text { 12, } 1931 \end{array}$	$\begin{aligned} & \text { Dec. } \\ & 13,1930 \end{aligned}$
98 cities.	12	15	12	15	7	10	7	210	9	88
New England	7	24	10	17	2	12	5	7	10	19
Middle Atlantic.-.	6	4	8	5	4	3	5	8	6	6
West North Central	13	19	8	23	8	8	4	${ }_{6} 6$	6	6
South A tlantic..	$3 \hat{6}$	34	24	28	34	32	16	18	32	4
East South Central.	23	48	41	13	6	12	12	12	17	18
West South Central.	24	87	41	84	7	70	27	${ }^{2} 26$	34	22
Mountain.	0	26	9	53	0	9	28	9	0	0
Pacific.	10	10	18	10	2	6	10	10	6	6
INFLUENZA D. ITH RATES										
91 cities..	8	9	7	10	7	9	7	19	8	29
New England	141010660072712	5889663928995	7646122510175	7756241336627	095361317287	21170102614267	246663879	568122013234182	$\begin{array}{r} 5 \\ 8 \\ 3 \\ 6 \\ 12 \\ 25 \\ 7 \\ 35 \\ 14 \end{array}$	$\begin{array}{\|r} 5 \\ 7 \\ 5 \\ 21 \\ 24 \\ 28 \\ 211 \\ 9 \\ 7 \end{array}$
Middle Atlantic.										
West North Central										
South Atlantic......										
East South Central.										
West South Central.										
Mountain.										
Pacific..										

PNEUMONIA DEATH RATES

${ }^{2}$ Shreveport, La., not included.

FOREIGN AND INSULAR

CANADA

Provinces-Communicable diseases-Week ended December 5, 1991.The Bureau of Pensions and National Health of Canada reports cases of certain communicable diseases for the week ended December 5,1931 , as follows:

Province	$\begin{gathered} \text { Cerebro- } \\ \text { spinal } \\ \text { fever } \end{gathered}$	Influenza	Poliomyelitis	Smallpox	Typhold fever
Prince Edward Island ${ }^{1}$					
Nova Scotia.-..		8	1		1
New Brunswick			9		11
Ontario....	1		1	5	23
Manitoba..					4
Saskatchewan.				9	
Alberta-...--				1	
British Columbia ${ }^{\text {- }}$					
Total	1	8	11	15	40

${ }^{1}$ No case of any disease included in the table was reported during the week.
Quebec Province-Communicable diseases-Week ended December 5, 1931.-The Bureau of Health of the Province of Quebec, Canada, reports cases of certain communicable diseases for the week ended December 5, 1931, as follows:

Disease	Cases	Disease	Cases
Chicken pox...	106	Poliomyelitis...	9
Diphtheria	56	Scarlet fever-	79
Erysipelas.....-	2 3	Tuberculosis-.	27
Measles meas......	159	Whooping cough.	23
Mumps.......	27		

CUBA

Provinces-Communicable diseases-Four weeks ended October 24, 1931.-During the four weeks ended October 24, 1931, cases of certain communicable diseases were reported in Cuba as follows:

Disease	Pinar del Rio	Habana	$\underset{\text { zas }}{\text { Matan- }}$	Santa Clara	Camaguey	Oriente	Total
Diphtheria		14		5	1		20
Malaria.		16		1	24	22	63
Measles		70	${ }_{3}^{6}$	19		..---.--	$\stackrel{96}{8}$
Paratyphoid fever.			3				8
Poliomyelitis...		4	1	2			7
Typhoid fever		15	6	18	4	10	53

JAMAICA

Communicable diseases-Four weeks ended December 5, 1931.During the four weeks ended December 5, 1931, cases of certain communicable diseases were reported in Kingston, Jamaica, and in the island of Jamaica outside of Kingston, as follows :

Disease	$\begin{aligned} & \text { Kings- } \\ & \text { ton } \end{aligned}$	$\begin{aligned} & \text { Other } \\ & \text { locali- } \\ & \text { ties } \end{aligned}$	Disease	$\begin{gathered} \text { Kings- } \\ \text { ton } \end{gathered}$	Other localities
Cerebrospinal mening	1	2	Lethargic encephalitis		
Chicken pox...	2	28	Puerperal fever.....		
Dysentery	2	6	smallpox (alastrim)		
Erysipelas.		1	Tuberculosis	35	60
Leprosy		3	Typhoid fever.	5	71

MEXICO
Tampico-Communicable diseases-November, 1931.-During the month of November, 1931, certain communicable diseases were reported in Tampico, Mexico, as follows:

Disease	Cases	Deaths	Disease	Cases	Deaths
Diphtheria.	6	2	Paratyphoid fever.		2
Dysentery		50	Smallpox-..-	1	
Infuenza.	19		Tuberculosis.-	66 3	$\stackrel{20}{4}$
Malaria.	953	25	Whooping cough	18	4

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER
From medical officers of the Public Health Service, American consuls, International Omice of Public Hygiene, Pan American Sanitary Bureau, health section of the League of
Nations, and other sources. The reports contained in the following tables must not be considered as complete or inal as regards either the list of countries included or the figures
for the particular countries for which reports are given.
[C indicates cases; D, deaths; P, present]

CEOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
[C indicates cases; D, deaths; P, present]

Place	$\begin{array}{\|c} \text { May } \\ 31- \\ \text { June } 27, \\ 1931 \end{array}$	$\begin{gathered} \text { June } \\ \text { Julv } \\ \text { uly } \\ 1931 \end{gathered}$	$\left\|\begin{array}{c} \text { July } \\ 20- \\ \text { Aug.22, } \\ 1931 \end{array}\right\|$	$\begin{gathered} \text { Aug. } \\ \text { sep. } \\ \text { sept. } \\ 1931 \\ 1931 \end{gathered}$	Week ended-												
					Sept. October, 1931						November, 1931				December, 1931		
						3	10	17	24	31	7	14	21	28	5	12	19
India (Portuguese) ${ }_{\text {O }}$	1	2	2	34	-	17	19	39	18	20							
Indo-China (see also table below): Cochin-China-Rachgia																	
			2	$\stackrel{-}{2}$	--...-	-	--.--			2	2	.-.					
	${ }_{61}^{1}$	14				1	1										P
Iraq: Abulkhasib							1										
				6													
Amara							2					3	3				
			i	${ }^{69} 9$				${ }_{2}^{1}$	$1{ }_{13}^{1}$			2	4				
				120 293	29	24 19	14 29	17 32	10 38 30	6 30 3	8 8 8			2			
Basra Province... ${ }_{\text {D }}^{\text {D }}$		---.-.--	287	154	34	11	13	${ }_{26}$	7	18	10	1		
Dinwaniyah			2	${ }_{30}^{53}$	28 9	14 8	1	1	3	7							
					15					1							
Iwanlyah... ${ }_{\text {D }}^{\text {D }}$					111	6	5	22	10	5							
					15									-			
Kut Province \qquad D										${ }_{12}^{17}$	3	--.					
				225	53	54	45	55	17	19	9		1	1			
Nasiriyah \square D				$\begin{array}{r}145 \\ 88 \\ \hline\end{array}$	38 4 4		28 18	37 7	10 4	18 7	${ }_{6}^{6}$	${ }^{17}$	3 2	6			
Suqelshuyukh....................................... ${ }_{\text {D }}^{\text {D }}$				75 2	3	4	18	3	3	6	3			6			
Japan: Talwan-Kelung................................ ${ }^{\text {D }}$																	
Persia: ${ }^{1}$ Abadan											2						

 2 Figures for cholera in the Philippine Islands are subject to correction.

1 Reports incomplete
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued PLAGUE-Continued
[C indicates cases; D , deaths; P, D

sMALLPOX

Place	$\begin{gathered} \text { May } \\ \text { 81-June } \\ \text { 27, } 1931 \end{gathered}$	$\begin{gathered} \text { June } \\ \text { 23-July } \\ \text { 25, } 1931 \end{gathered}$	$\begin{aligned} & \text { July 20- } \\ & \text { Aug. } \\ & 20,1931 \end{aligned}$	Week ended-															
				$\begin{gathered} \text { Aug. } \\ 29, \\ 1931 \end{gathered}$	September, 1981				October, 1931					November, 1931				$\begin{gathered} \text { December, } \\ 1981 \end{gathered}$	
					5	12	19	28	8	10	17	24	31	7	14	21	28	5	12
	8	1			1									1					
	4	41	34	7	13	12	16	12	18		16	7	24						
British East Africa: Tanganyika British Sonth Africa: \qquad	7	149	19	31	4	6	9	8	2	1,121	53		18						
British South Africa: Northern Rhodesia. Southern Rhodesia \qquad		21	28			1	4	4		1	2		2						
Canada:	1	2			1	2													
Canada: Alberta \qquad		1	1					12				1	2	2	1		2	1	
		2	5		1	1								1	1				
Manitoba \qquad ${ }_{C}^{C}$	4					1	1									1	1	--...-	
																	1		
	32	$3{ }^{-1}$	5	4	1	2		5	2	1	9	-----	7	3	5	3	2	8	-
Ottawa \qquad \xrightarrow{C}						1		5	2		1		4	8	5				
Quebec \qquad																	1		
	54	42	28	8	8	12	5	1	6	3	1	11	3	1	18	12	6	9	
Chile: Antofagasta \qquad																			
		1										2							
China: D												1							
		2				1		1			1	1		1	6	2	5	11	
				1										1	p^{1}	6	3	2	
			3		P		P	1	P		P			4		${ }^{-1}$			
Manchuria-Kwantung-Dairen-...-.	1																		
Nanking Shanghai- \qquad O			1																
Foreigners only \qquad C	11	3					35	29	17	17	1	6	2	12	16	13			
	13	6		1		1		8					1	1		B			

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued SMALLPOX-Continued
IC indicates cases; D, deaths; P, present]

Pondicherry Province Indo-China (see also table below): Pnompenh	7 7 2	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	20 20	1	6	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	1	4	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	4	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	5 5	$\begin{aligned} & 6 \\ & 6 \end{aligned}$				
Saigon and Cholon ${ }^{\text {D }}$																			
		1	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	1		8	2	-	4	1			4	2	1		${ }^{-7}$	7	-----*
Iraq: Baghdad.	1																1		
Basra	1																1	2	2
		1	1					5											
Ivory Coast (see table below).																			
																	1		
																	1		
Mexico (see also table below): Jalisco (State)-Guadalajara																			
Jalisco (State)-Guadalajara............- D Mexico City and surrounding territory.	1 25	22	10	2	2			$\left\lvert\, \begin{aligned} & 1 \\ & 2\end{aligned}\right.$	1	2			- 1	2	---2	1			
Monterrey	13	8	2			1	1	1	2										
	3				1	1			1				2				1	5	
Morocco (see table below). D	2					1													
Netherlands: Friesland-Opsterland....... \mathbf{C}												11							
								$13{ }^{13}$	318			1							
Panama: Chiriqui ${ }^{\text {D }}$								39	102										
																		3	
	48	45	37	10	21	18	17		11				1		1				
Rumania (see table below):		45	37		21		17	16	11	6	15	19	16	17	20	22	23	21	---*-*
	5 1	1				3													
Spain		7																	
			1																
	1					32										2			
Syria (see table below).						6													
Turkey (see table below).																			
Union of Socialist Soviet Republics (see table below).																			
Union of South Africa: Cape Province																			
						P								\mathbf{P}					
Orange Free State Transvaal	P	$\underset{\mathbf{P}}{ }$	\mathbf{P}	P	P	\mathbf{P}		-	$\overline{\mathbf{P}}$	- ${ }^{-\cdots}$									
Upper Volta	${ }^{P} 12$	P 2										P	P	P					
On ressel. D																			
On vessel: S. S. Taif (pilgrim ship) at Suakin from Jeddah \qquad			1																

${ }^{2}$ Imported case.
CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued

TYPHUS FEVER
[O indicates cases; D , deaths; P , present]

GEIOLERA, PLAGUE, GMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued TYPHUS FEVER-Continued
[O indicates cases; D , deaths; P , present]

Place	$\underset{1931}{\mathrm{~A} p \mathrm{ill},}$	$\begin{aligned} & \text { May, } \\ & \text { 1931 } \end{aligned}$	$\begin{gathered} \text { June, } \\ 1931 \end{gathered}$	$\begin{aligned} & \text { July, } \\ & \text { 1931 } \end{aligned}$	$\begin{aligned} & \text { Au- } \\ & \text { gust, } \\ & \text { 1931 } \end{aligned}$	$\begin{array}{\|c\|} \text { Sepp- } \\ \text { tember, } \\ 1931 \end{array}$	October, 1931	Place	$\underset{1931}{\text { April, }}$	$\begin{aligned} & \text { May, } \\ & 1931 \end{aligned}$	$\begin{aligned} & \text { June, } \\ & \text { 1931 } \end{aligned}$	$\begin{aligned} & \text { July, } \\ & \text { 1931 } \end{aligned}$	Aus- 1931	$\begin{array}{\|c\|} \text { Sep- } \\ \text { tamber, } \\ 1931 \end{array}$	Octo 1031
Chosen: Seoul......-............... C	4		6	1				8....-....-...------.----		10		8	2		
Crechoslovakia_.................. ${ }_{\text {C }}^{\text {D }}$	1		1	1				\cdots	5	10	2	8	2		
	22	${ }_{6}^{11}$	${ }_{9}$	2	13	9		Turkey of Socalist soviet Re-	32	13	11	9		16	
Guatemala	3				2	1			1, 513	1,324					
			33 15	34	3					14	2	3	1		

\footnotetext{
YELLOW FEVER
[C indicates cases; D, deaths; P, present]

Place	$\begin{gathered} \text { May } \\ \text { 31- } \\ \text { June } \\ 27,1931 \end{gathered}$	June $28-$ 25,1931		Aug. 23Sept. 19, 1931	Week ended-																
					Sept.	October, 1931					November, 1931				$\begin{gathered} \text { Decomber, } \\ 1031 \end{gathered}$						
						3	10	17	24	31	7	14	21	28	5	12					
Brazil:																					
			2																		
											1										
	1		1																		
				2																	
Recife...-... ${ }^{\text {C }}$				2																	
					1																
Gold Coast: Akuse.																					
Dagombs District ${ }^{\text {D }}$																					

CHOLERA, PLAGUE, SMALLPOX, TYPHUS FEVER, AND YELLOW FEVER-Continued
YELLOW FEVER-Continued
(O indicates cases; \mathbf{D}, deaths; P. prese

[^0]: 1 Studies in Diseases of Adult Life No. 6, from the Division of Research, Milbank Memorial Funds This phase of the studies was carried out in cooperation with the Office of Industrial Hygiene and Sanitation, United States Public Health Service. The data were made available by the Medical Department of the Life Extension Institute.
 ${ }^{2}$ Studies in Diseases of Adult Life No. 4: Physical Impairments and Occupational Class. Differential Rates Based Upon Medical Examinations of 100,924 Native-born, Adult White Insured Males. By Edgar Sydenstricker and Rollo H. Britten. Pub. Health Rep., vol. 45, No. 34, Aug. 22, 1930. (Reprint No. 1404.)
 ${ }^{3}$ Studies in Diseases of Adult Life No. 1: General Results of a Statistical Study of Medical Examinations by the Life Extension Institute of 100,024 White Male Life Insurance Policyholders Since 1921. By Edgar Sydenstricker and Rollo H. Britten. Amer. Jour. Hyg., Vol. XI, No. 1, pp. 73-155, January, 1930.

[^1]: 'Here p represents the probability that the impairment would be found in the whole group (i. e., the rate reduced to a unity basis), and q the probability that it would not be found. It will be noticed that the product of these two probabilities becomes less as the rate decreases (i. e., from 50 per cent down). The constant 50 was chosen arbitrarily to give a criterion of 25 cases at an average impairment rate of 50 per cent, since the square root of one-half times one-half is one-half. This would require a population of 50 persons. If the average rate for an impairment is 10 per cent, then the square root of the two probabilities is 0.3 , and 15 cases are required, or a population of 150 . At 5 per cent we have 11 cases and a population of 220 . At 3 per cent we have about 8 cases and a population of about 275. A graph was prepared from which these values were easily derived.

[^2]: ${ }^{6}$ This point may be clearly explained by reference to a condition such as carious teeth. In that case 8 occupations showed rates in excess of that of "business" by more then four times the probable error; but, as a matter of fact, many of the others must have been significantly higher, because 27 occupations were above the "business" level and only 1 below. We can not say that all of those 27 were significantly higher, but we know that most of them were. In other words, if we think of the occupations as a series, rather than a single one, it becomes necessary to consider many which could not be shown by reference to the probable error to be significantly different. Moreover, the probable error ceases to have a precise meaning when the test is applied to 28 different items rather than one. For instance, in the case of the highest rate for a given impairment, we have selected a rate at one end of the distribution and are most likely dealing with a chance that would occur only once in twenty-eight times. A positive deviation of three times the probable error would be expected to occur from chance alone about once in twenty-eight times. Thus the precise meaning of the probable error is lost.

[^3]: - Obtained as described in footnote 6.
 ${ }^{6}$ It is not possible to obtain a direct average of the deviations. However, if the distribution of deviations for a particular occupation is reduced to percentages, and these percentages are cumulated, it will be possible to determine the percentage of persons down to 15 millimeters below, and the percentage of persons up to 20 millimeters above. By plotting these two percentages on "probability" paper, connecting tha two points with a straight line, and reading off the deviation at the point where this line crosses the 50 per cent line, it is possible to obtain an average deviation. If this deviation is then added algebraically to the standard which was originally subtracted in the cass of each individual, an average blood pressure is obtained. It should be noted that this average more nearly approaches the median blood pressure than the arithmetic mean, but it seems quite adequate for our purposes.

[^4]: ${ }^{1}$ From Field Investigations in Child Hygiene, in Cooperation with the Office of Statistical Investigations, United States Public Health Service. Dental Examinations by Meaker and Statistical Analysis by Stoughton.
 ${ }^{2}$ Dental decay and corrections among school children of different ages. Public Hiealth Reports, Vol. 46, No. 44, October 30, 1931. Reprint No. 1524.

[^5]: See footnotes at end of table

[^6]: ${ }^{1}$ Deaths of nonresidents are included. Stillbirths are excluded.
 ${ }_{2}$ These rates represent annual rates per 1,000 population, as estimated for 1931 and 1930 by the arithmetical method.
 ${ }^{2}$ Deaths under 1 year of age per 1,000 live births. Cities left blank are not in the registration area for births.
 ${ }^{4}$ Data for 77 citics.

 - Deaths for week ended Friday.

 6 For the cities for which deaths are shown by color the percentages of colored population in 1030 wero as follows: Atlanta, 33; Baltimore, 18; Birmingham, 38; Dallas, 17; Forth Worth, 16; Houston, 27; Indianasolis 12; Kansas City, Kans., 19; Knorville, 16; Lanisville, 15; Memphis, 38; Miami, 23; Nashville 22; Now Orieans, 28; Rictrmond, 29; and Wastington, D. C., 27.
 ${ }^{7}$ Population Apr. 1, 1930; decreased 1920 to 1930, no estimate made.

[^7]: ${ }^{1}$ New York City only.
 Week ended Friday.
 ${ }^{3}$ TYphus fever, 1931, 5 cases: 2 cases in South Carolina, 1 case in Georgia, 1 case in Alabama, and 1 case in Californis.

 - Migures for 1931 are exclusive of Oklahoma City and Tulsa.

[^8]: ? Week ended Friday.
 ${ }^{3}$ Typhus fever, 1931, 5 cases: 2 cases in South Carolins, 1 case in Georgia, 1 case in Alabama, and 1 case in California.

 - Figures for 1931 are exclusive of Oklahoma City and Tulsa,

[^9]: 12 nonresidents.

[^10]: ${ }_{1}$ The figures given in this table are rates per 100,000 population, annual basis, and not the number of cases reported. Populations used are estimated as of July 1, 1931, and 1930, respectively.
 ${ }^{2}$ Shreveport, La., not included.

